

Multi-modal Data Analysis in Cancer Research

Petr V. Nazarov

modas.lu

Open lecture, Department of Mathematical Problems of Control and Cybernetics,

Chernivtsi National University, Ukraine, 2023-03-23

Outline

Challenges and Methods

- Heterogeneity in Cancer Research
- Histopathology and molecular methods
- Data integration

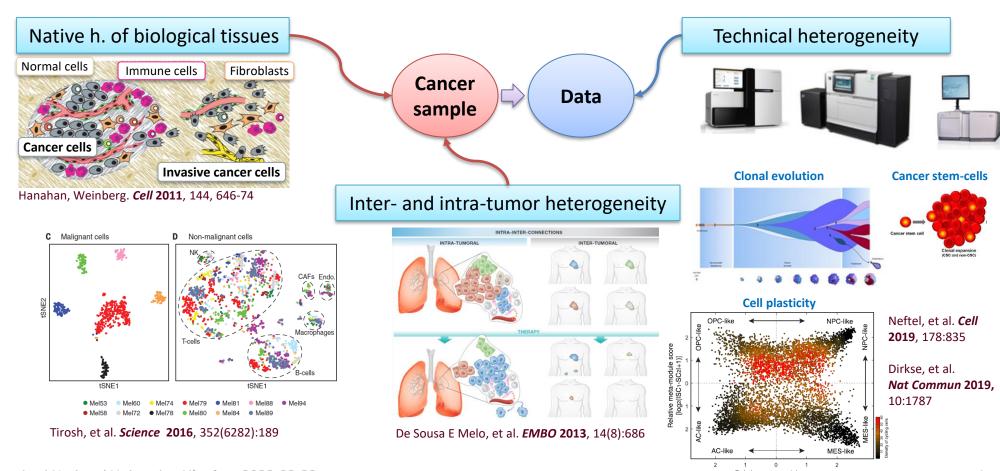
Multi-omics data deconvolution and integration

- Single omics data deconvolution and integration
- Multi-omics data deconvolution and integration
- Multi-modal data integration
 - Combining histopathology and molecular methods

Challenges and Methods

Heterogeneity

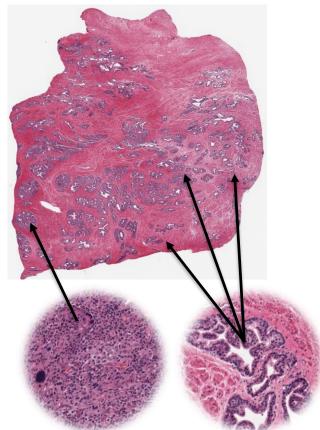
Levels of Heterogeneity in Samples of Cancer Patients



[log2(ISC1-SC2I+1)]

Approach 1: Histopathology

Hematoxylin and Eosin (H&E) stain



Tumor: 1% Normal: 99%

Features of histopathology

- Gold standard!
- Cheap (H&E or 2-3 antibodies in IHC)
- Captures native heterogeneity of tissues
- Shows inter/intra tumor heterogeneity
- Often allows precise diagnostics

Issues in histopathological image analysis:

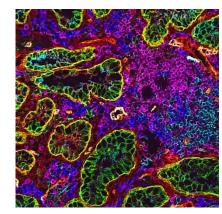
- Tedious analysis
- ➤ In some cancers (e.g. prostate) < 1% of the image is cancer-related
- For some cancers, it does not allow precise diagnostics (e.g. some astrocytomas vs oligodendrogliomas)
- Gives non-structured data
- Invasive

Immunohistochemistry (IHC)



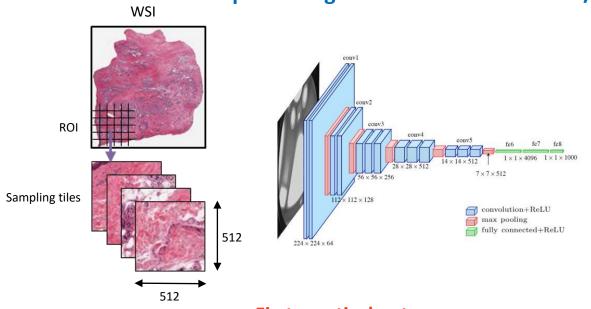
Ki-67 - proliferation marker

Multicolor IHC



Approach 1: Histopathology

Deep Learning for Tumor Identification / Classification



classes:

- Astrocytoma
- Oligodendroglioma
- Glioblastoma
- Normal
- Necrosis

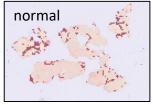
First practical outcome:

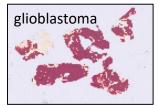
DeepHisto tool for automatic detection/classification of gliomas (LIH)

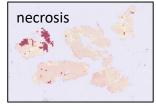
normal?

DeepHisto

glioblastoma?
astrocytoma?
oligodendroglioma?







Approach 2: Molecular Profiling

Proteomics

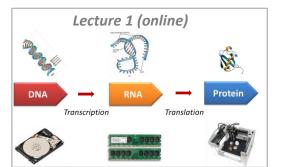
Copy-number variation (CNV)

Chimeric genes

Methylation

Gene expression

Genomics



Isoform detection

Protein abundance

Transcriptomics

Chimeric proteins

Abundance of metabolites

Metabolomics

Features of molecular approach

- Very specific
- Generate a lot of data
- Generate structured data

Issues of molecular approach

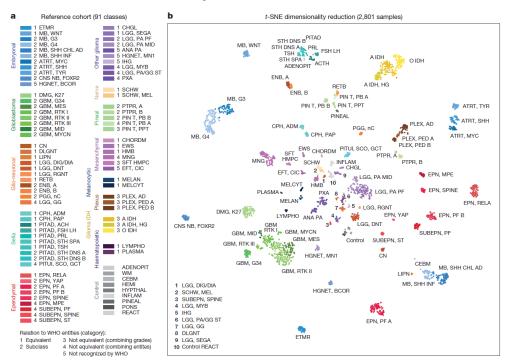
- Quite expensive
- Is sensitive to heterogeneity of samples
- Is sensitive to a technique

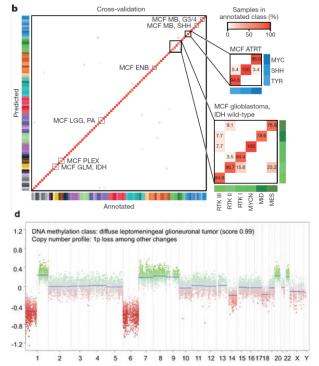
Approach 2: Molecular Profiling

Heidelberg Brain Tumor Classifier

Capper et al. *Nature* **2018**, 555(7697):469 Capper et al. *Acta Neuropathologica* **2018**, 136:181

DNA methylation-based classification of central nervous system tumours

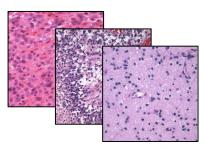




- Methylation showed more specificity than histopathology identifying types of brain tumors
- A highly standardized pipeline allowed analysis across many cohorts worldwide
- Result: "Heidelberg classifier" is used by pathologists 😊

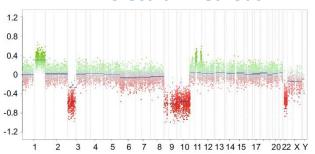
Improvements via Integration

1. Histopathology



- Automate analysis
- Transform unstructured data (images) to structured (features)

2. Molecular methods



- Deconvolute mixed signals
- > Integrate various molecular data

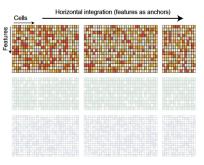
Integrate both approaches for better patient diagnostics and studying molecular processes

- Tegious analysis
- < 1% of the image is cancer-related</p>
- For some concers, it does not allow precise diagnostics
- Gives non-structured data

- Quite expensive
- Is sensitive to the heterogeneity of samples
- > Is sensitive to a technique

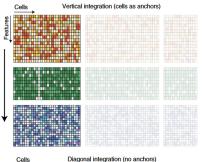
Multi-modal Data Integration

Data integration tasks



Horizontal integration

- Batch correction
- Normalization
- ANOVA



Vertical integration:

- Correlation analysis
- Canonical correlation analysis
- Matrix factorization

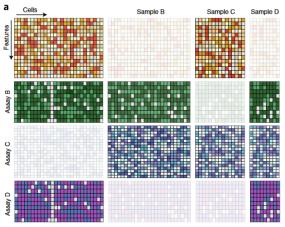
Integration task	Method
Vertical (global)	CCA
Vertical (global)	JIVE
Vertical (global)	PLS
Vertical (global)	MCIA
Vertical (global)	MOFA+
Vertical (global)	scAl
Vertical (global)	iNMF
Vertical (global)	Seurat v4
Vertical (local)	Spearman's rank correlation coefficient
Vertical (local)	LMM
Horizontal	MNN
Horizontal	Seurat v3
Horizontal	LIGER
Horizontal	Harmony
Horizontal	Scanorama
Horizontal	BBKNN
Horizontal	scVI
Horizontal	scmap
Horizontal	conos
Diagonal	MATCHER
Diagonal	MMD-MMA
Diagonal	SCIM
Diagonal	UnionCom
Diagonal	coupledNMF

Table 11 Overview of common data integration methods

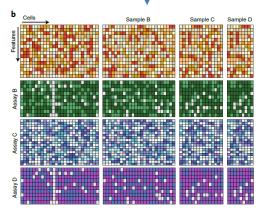
Diagonal integration:

- Latent manifold (многовид / многообразие)
- Simplify to H. or V. by labelling similar subsets
- Use deep-learning (e.g. variational autoencoders)

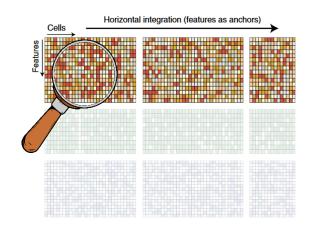
Mosaic integration:



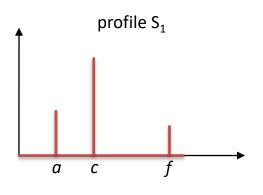
imputation | deep learning?

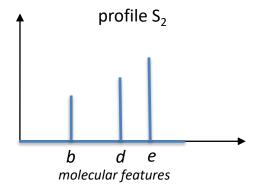


Deconvolution

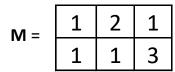


Deconvolution: Concept



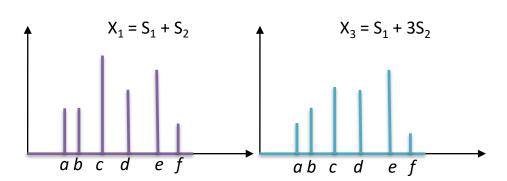


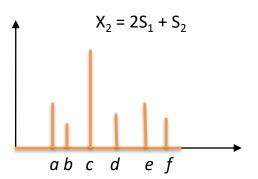
$$X = S \times M$$



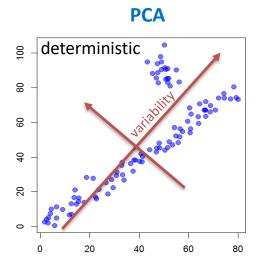
Often called:

- decomposition
- deconvolution

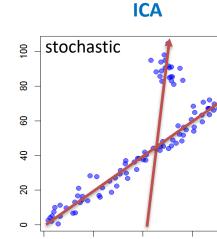




Methods



- + deterministic & fast
- + any number of samples
- + unsupervised
- often biological factors are presented by a sum of several components
- positive and negative values



+ correlates with biology

40

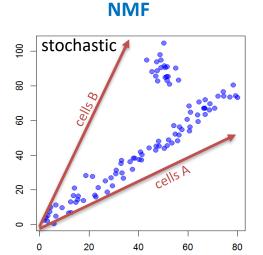
60

80

- + unsupervised (agnostic)
- + quite stable

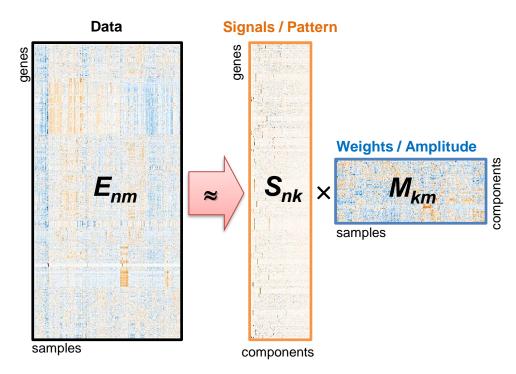
20

- stochastic
- needs a lot of samples
- positive and negative values



- + semi-unsupervised
- + easy to interpret
- stochastic
- unstable

Deconvolution via Matrix Factorization



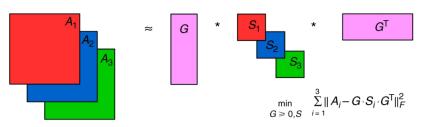
PCA: principal component analysis

 $\textbf{NMF}: \ non-negative \ matrix \ factorization$

ICA: independent component analysis

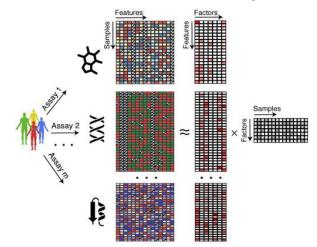
etc.

Matrix tri-factorization



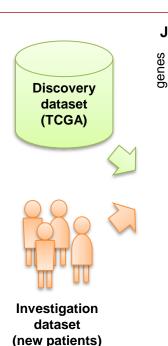
Malod-Dognin et al. Nat Commun 2019, 10:805

Multi-omics Factor Analysis

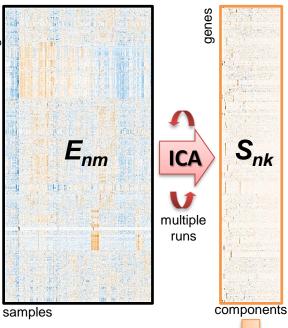


Argelaguet et al. Mol Syst Biol 2018, 14:e8124

Research Focus: Deconvolution of Omics Data



Joined Expression Data Independent Signals

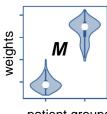


Diagnostics: using machine learning tools to predict classes of the samples

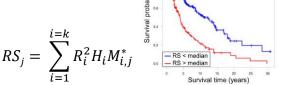
Prognostics:

using Cox regression & combine weights into a risk score **RS**_i to patient survival

Weights M in



patient groups



Genes, contributing



Jazarov et al. RMC Medical Genomics (2019) 12:132

BMC Medical Genomics

TECHNICAL ADVANCE

Deconvolution of transcriptomes and miRNomes by independent component analysis provides insights into biological processes and clinical outcomes of melanoma patients

Petr V. Nazarov¹⁺¹0, Anke K. Wienecke-Baldacchino^{2,3+}, Andrei Zinovyev^{4,5}, Urszula Czerwińska^{4,5,6}, Arnaud Muller¹, Dorothée Nashan⁷, Gunnar Dittmar¹, Francisco Azuaie¹ and Stephanie Kreis

Functional annotation:

linking components to biological processes and cell types

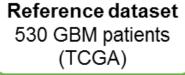
consICA: Nazarov et al **BMC Medical Genomics**, 2019 (link)

ICA review: Sompairac, et al Int J Mol Sci, 2019 (link) Application: Golebiewska et al, Acta Neuropathol, 2020 Scherer, Nazarov et al, Nat Protoc, 2020

Deconvolution for Horizontal Integration: GBM

58 samples:

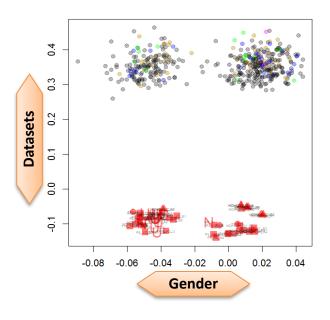
patient tissues



Biological knowledge: bio-processes and sample composition

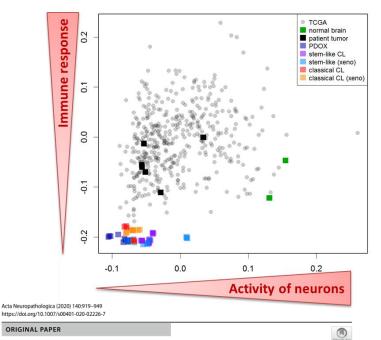
- We were able to map in-house cell line data onto TCGA dataset (GBM)
- Some components captured technical factors \rightarrow (and thus clean other components from them)
- Other relevant biological information: cell cycle, cell migration, presence of stromal and immune cells. We were able to predict phenotype of cell lines using their transcriptomes.

Technical/trivial components: gender and platforms



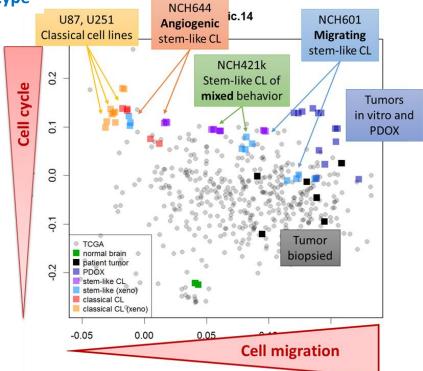
Deconvolution for Horizontal Integration: GBM

ICA correctly predicts sample composition & phenotype



Patient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology

Anna Golebiewska¹· Ann-Christin Hau¹· Anaïs Oudin¹· Daniel Stieber¹²²· Yahaya A. Yabo¹³³·
Virginie Baus¹· Vanessa Barthelemy¹· Eliane Klein¹· Sébastien Bougnaud¹· Olivier Keunen¹⁴· May Wantz¹·
Alessandro Micheluc¹¹ऽ⁶. Virginie Neirinckx¹· Arnaud Muller⁴· Tony Kaoma⁴· Petr V. Nazarov¹·
Francisco Azuaje⁴· Alfonso De Falco³³³· Ben Files²· Loraine Richar³³³³.89, Suresh Poovathingaf⁵· Thais Arns⁶·
Kamil Grzyb⁶· Andreas Mock¹⁰¹¹¹¹³. Christel Herold-Mende¹⁰· Anne Steino¹⁴¹¹⁵· Dennis Brown¹⁴¹¹⁵.
Patrick May⁶· Hrvoje Miletic¹6¹¹? - Tathiane M. Malta¹8· Houtan Noushmehr¹8· Yong-Jun Kwonð· Winnie Jahn¹9²⁰·
Barbara Klink²³¹¹¹ - Georgette Tanner²²· Lucy F. Stead²² - Michel Mittelbronn⁶²³ð - Alexander Skupin⁶·
Frank Herte[⁴³²¹ - Rolf Bjerkviq¹¹¹¹⁶· Simone P. Niclou¹¹¹⁰⁰

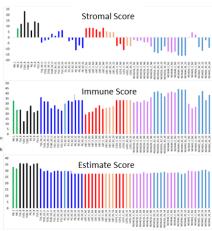


Golebiewska A. et al, Acta Neuropathologica, 2020 (link)

Phenotype of cell lines were predicted using unsupervised deconvolution of their transcriptomes!

- is reasonable and predicts phenotypic behavior of cell lines
- Tumor cells show higher mobility in xenografts

ESTIMATE was confused



Deconvolution for Horizontal Integration: PDAC

Weights / Amplitude

Signals / Pattern

Snk X

Data

Enm

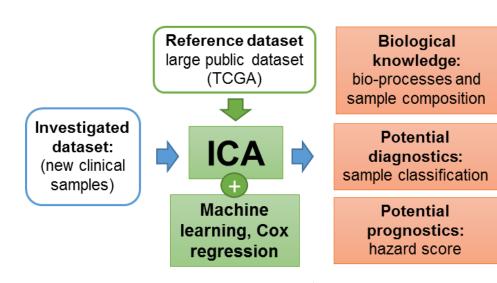
183 samples mRNA. miR. methylation

Bailey et al

96 samples mRNA

DKFZ

457 samples (268 tumors) mRNA, miR



j – patient index *i* – component index R^{2} – stability of *i*-th component (from 0 to 1) H_i – Cox' log hazard ratio calculated on **training set**

 $RS_i =$ M^*_{ii} – element of centered & scaled M-matrix

> In addition to diagnostics and prognostics, ICA allowed ranking patients based on the activity of biological processes

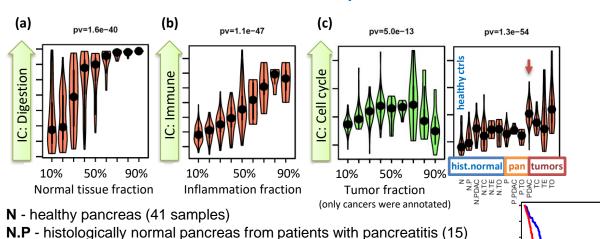
P – pancreatitis (59)

TC – cystic tumors (24)

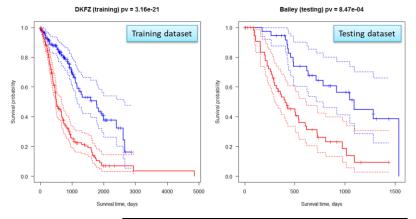
TO – other tumors (31)

Deconvolution for Horizontal Integration: PDAC

Pancreatic cancers: ICA results of mRNA expression data from DKFZ cohort



Prognostic markers between 2 cohorts



Acc: 0.83	N	N.PDAC	Р	PDAC
pred.N	32	2.6	1.8	2
pred.N.PDAC	0.6	1.7	2	1.6
pred.P	4.7	17.3	51.8	5.4
pred.PDAC	3.7	8.4	3.4	186

TE – neuroendocrine tumors (18) Components identified by ICA were annotated by biological functions (GO) and linked to survival using Cox regression.

Increased risk:

- keratinization
- cell cycle
- response to hypoxia
- neoangiogenesis
- activation of ERKsignaling

No effect:

- immune response
- gender
- axon development

Reduced risk:

- secretion activity (normal)
- digestion
- antigen binding

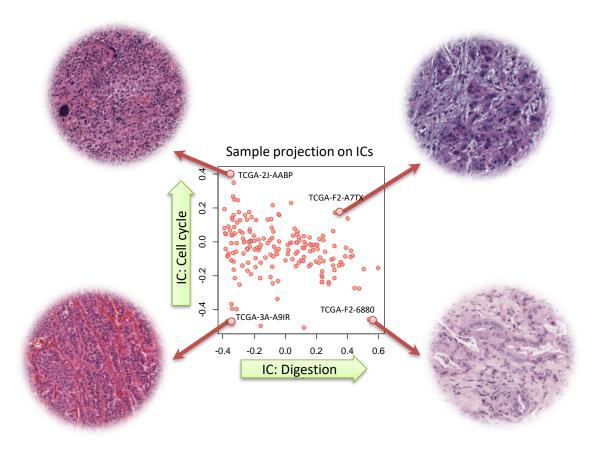
Unlike in melanoma, no direct link was found between immune response and survival: perhaps due to a dual / antinomic effect.

PDAC – pancreas ductal adenocarcinomas (195)

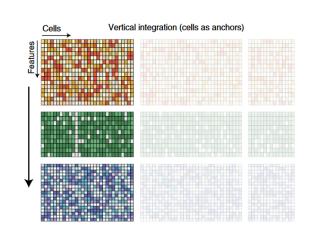
N.PDAC, N.TC, N.TE, N.TO - tumor-adjacent tissues (30+22+2+11)

Observation

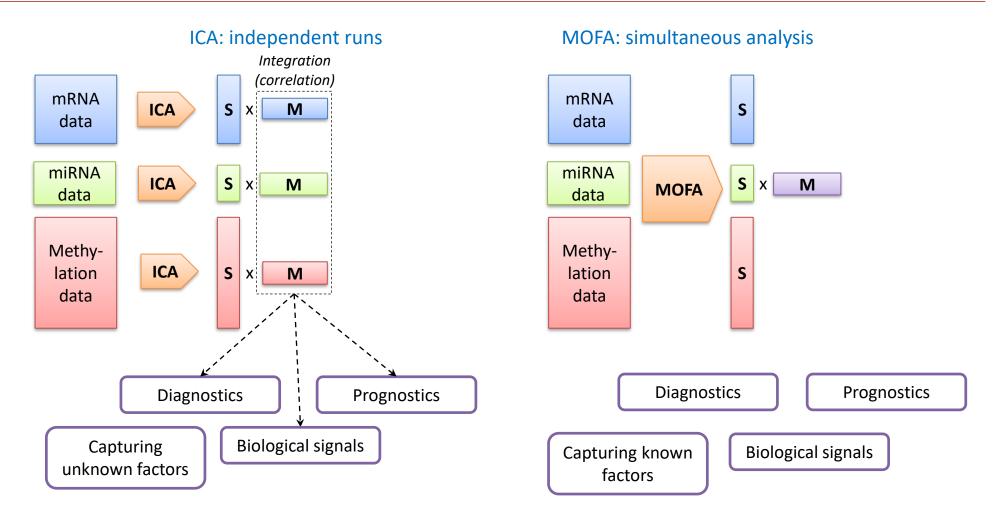
ICA results of mRNA expression data from TCGA-PAAD cohort



Integration (multi-omics)



Multi-omics Data Integration via Deconvolution



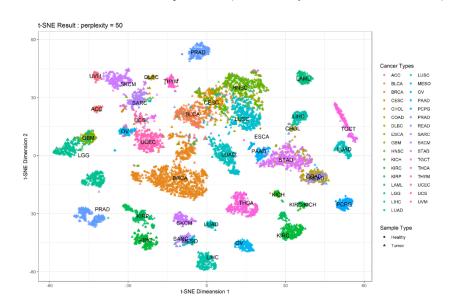
Pan-Cancer Data Integration

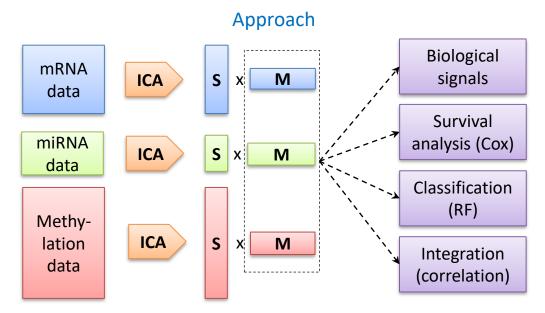
TCGA

The Cancer Genome Atlas

>11k patients, 33 types of tumors

- clinical data (age, gender, survival...)
- mRNA (10k samples, 20k features)
- miRNA (> 9k samples, ~1k features)
- methylation (>9k samples, 450k features)

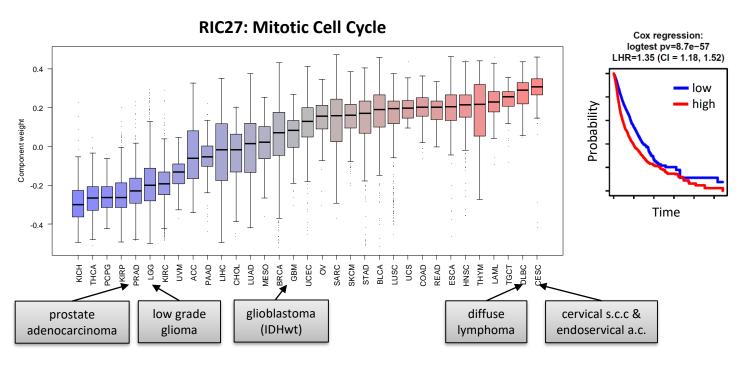




Here we used *consICA* with 100 components & 40 runs

Pan-cancer: ICA Components (unimodal)

ICA Results: Cell Cycle

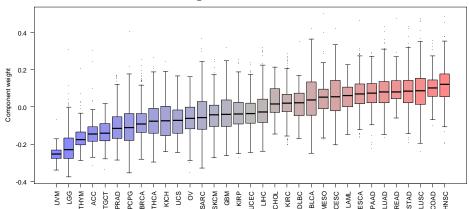


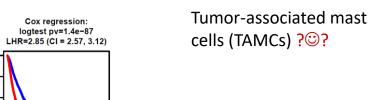
Code 💌	Study Name
ACC	Adrenocortical carcinoma
BLCA	Bladder urothelial carcinoma
BRCA	Breast invasive carcinoma
CESC	Cervical sq. cell carcinoma and endocervical adenocarcinoma
CHOL	Cholangiocarcinoma
COAD	Colon adenocarcinoma
DLBC	Lymphoid neoplasm diffuse large b-cell lymphoma
ESCA	Esophageal carcinoma
GBM	Glioblastoma multiforme
HNSC	Head and neck squamous cell carcinoma
KICH	Kidney chromophobe
KIRC	Kidney renal clear cell carcinoma
KIRP	Kidney renal papillary cell carcinoma
LAML	Acute myeloid leukemia
LCML	Chronic myelogenous leukemia
LGG	Brain lower grade glioma
LIHC	Liver hepatocellular carcinoma
LUAD	Lung adenocarcinoma
LUSC	Lung squamous cell carcinoma
MESO	Mesothelioma
ov	Ovarian serous cystadenocarcinoma
PAAD	Pancreatic adenocarcinoma
PCPG	Pheochromocytoma and paraganglioma
PRAD	Prostate adenocarcinoma
READ	Rectum adenocarcinoma
SARC	Sarcoma
SKCM	Skin cutaneous melanoma
STAD	Stomach adenocarcinoma
TGCT	Testicular germ cell tumors
THCA	Thyroid carcinoma
THYM	Thymoma
UCEC	Uterine corpus endometrial carcinoma
UCS	Uterine carcinosarcoma
UVM	Uveal melanoma

Pan-cancer: ICA Components (unimodal)

-0.6

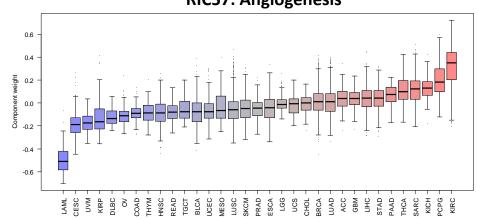
RIC17: Signal of Mast Cells*



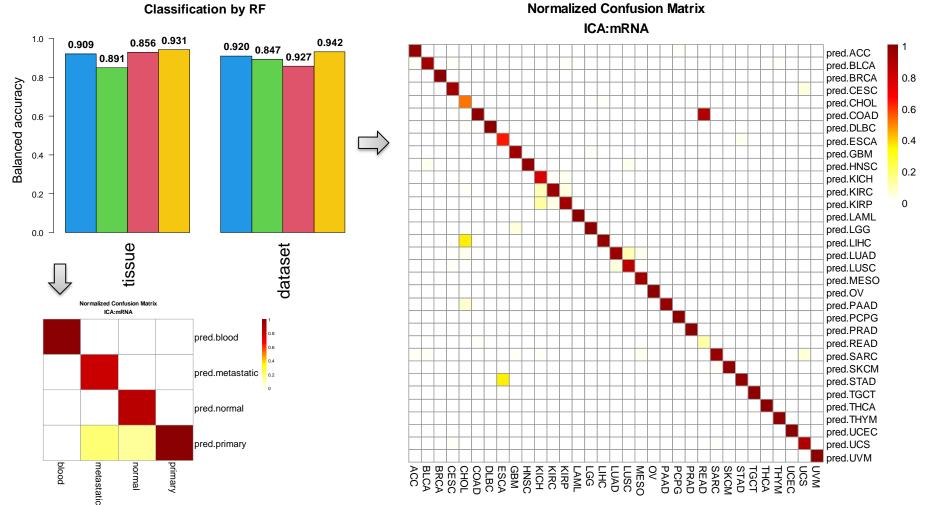


(*) assigned based on LM22 signature (CIBERSORT)

RIC16: Signal of T-Cells*



Pan-cancer: Classification (unimodal)



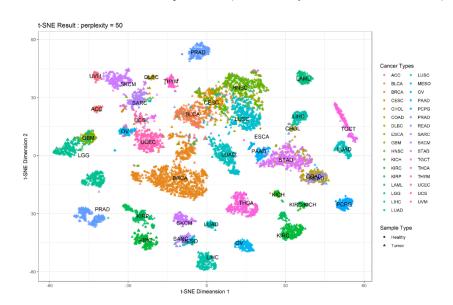
Pan-Cancer Data Integration

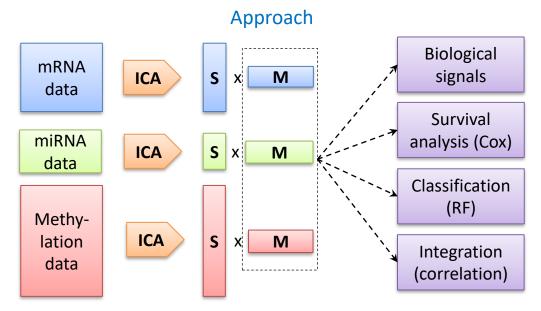
TCGA

The Cancer Genome Atlas

>11k patients, 33 types of tumors

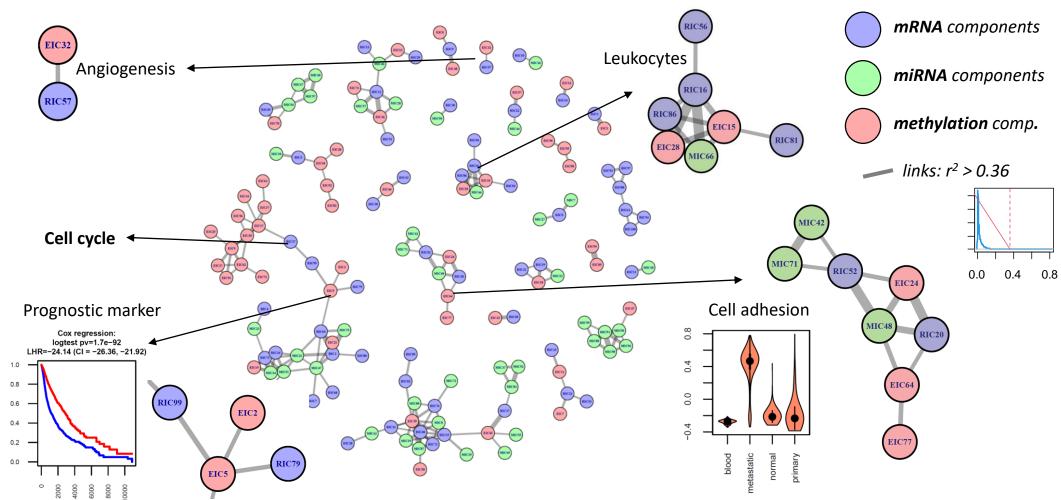
- clinical data (age, gender, survival...)
- mRNA (10k samples, 20k features)
- miRNA (> 9k samples, ~1k features)
- methylation (>9k samples, 450k features)





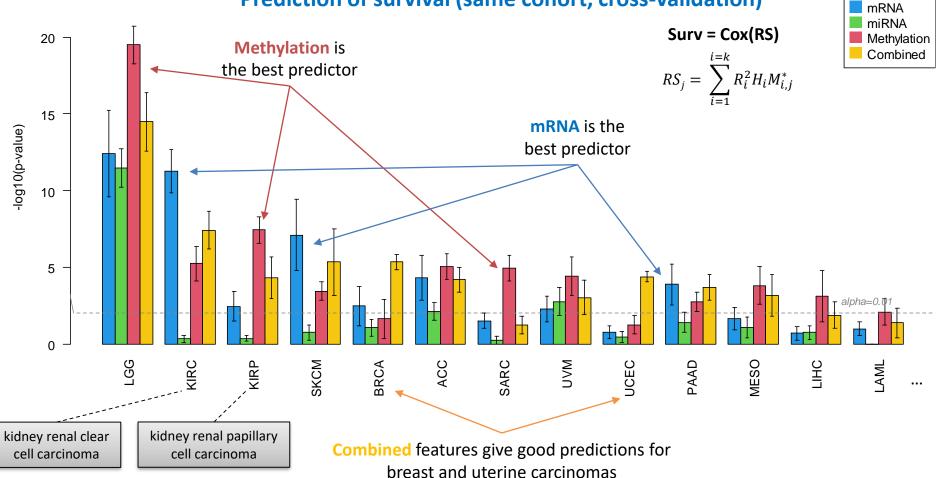
Here we used *consICA* with 100 components & 40 runs

Pan-cancer: ICA-based Data Integration



Pan-cancer: Prognosis

Prediction of survival (same cohort, cross-validation)



Take Home Message 1

ICA-based deconvolution:

- > Corrects technical biases
- > Extracts "cleaned" biological signals from bulk-sample data
- > Maps new samples into the space of biologically meaningful components
- > Extracts prognostic features and features with classification power
- > Can be used to integrate multi-omics data
- Diagnostic & prognostic properties could be expected for many cancers
- > Reduce dimensionality

Was validated:

- Using acceptable computational methods (cross-validation)
- > On cell lines
- > On independent cohorts of patients

Integration (multi-modal)

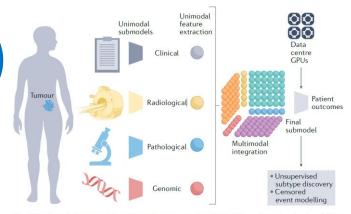
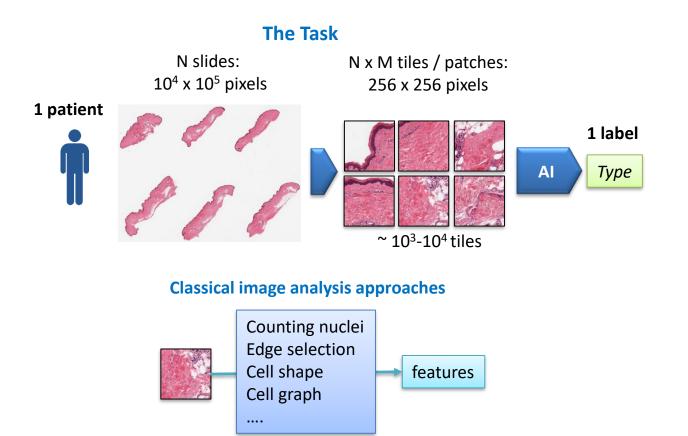


Fig. 2 | **Multimodal models integrate features across modalities.** Submodels extract unimodal features from each data modality. Next, a multimodal integration step generates intermodal features — a tensor fusion network (TFN) is indicated here⁵⁶. A final submodel infers patient outcomes. GPU, graphics processing unit.

Boehm, et al. Nature Reviews Cancer 2021, 22, 114-126

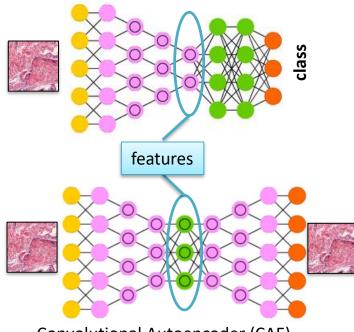
Digital Histopathology and Feature Extraction

How can we work with unstructured data (images)? Extract features!



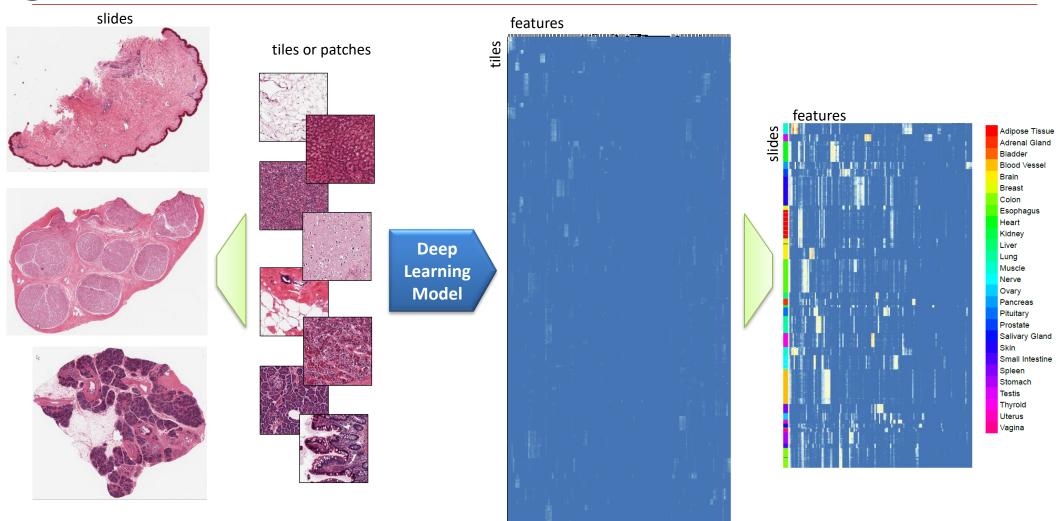
Deep Artificial Neural Networks

Deep convolutional neural network (CNN)



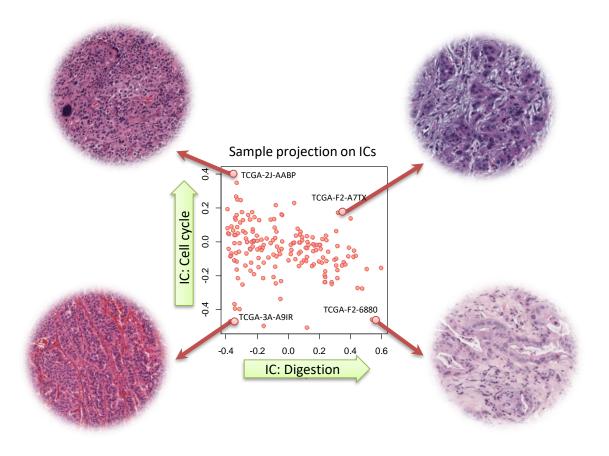
Chernivtsi National University, Ukraine, 2023-03-23

Digital Histopathology and Feature Extraction

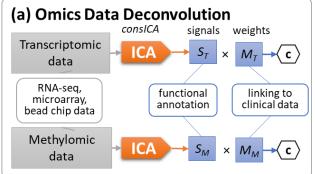


Observation

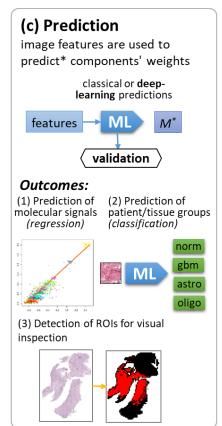
ICA results of mRNA expression data from TCGA-PAAD cohort



MEDEA: Project Overview



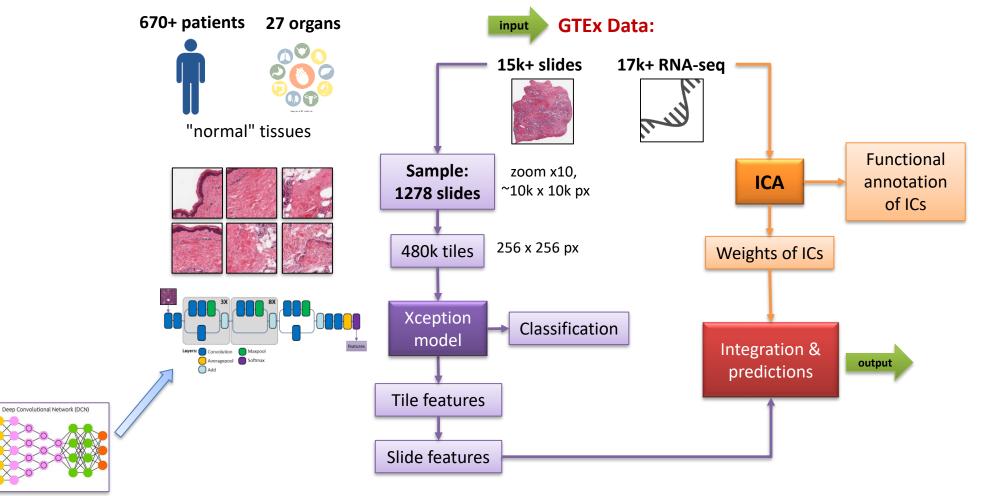




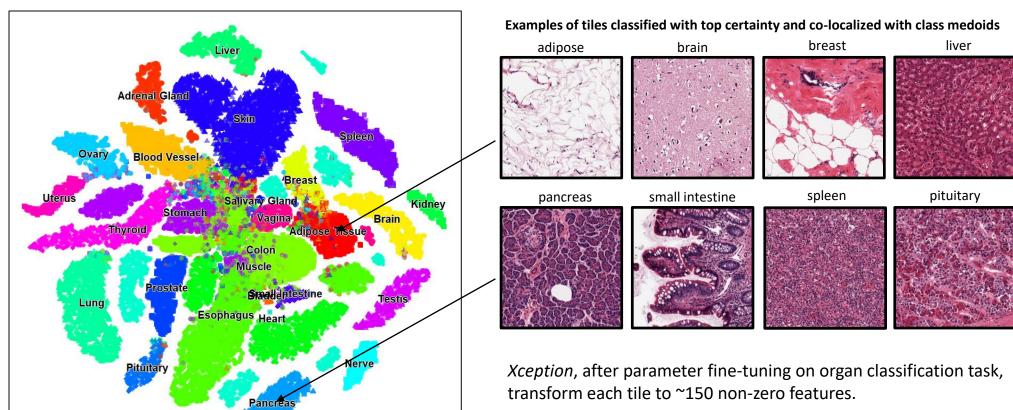
- (a) Deconvolution of the omics data using developed tool consICA. This method was already developed and applied to entire GTEx (mRNA), TCGA (mRNA and meDNA), and DKFZ (mRNA) cohorts.
- **(b)** Image analysis and feature extraction starts with a pretrained DLN and uses weakly supervised training to fine-tune model's parameters. Two strategies will be compared in the project: strategy 1 is a semi-supervised one using CNN-based classifier and strategy 2 — is completely unsupervised using CAE. Pretrained DLN can be used as an initial estimation of the encoder's parameters.
- (c) Integration of ICA-weights and image features is done either by a classical ML-approach (linear regression or random forest regression) or by an FC neural network. A thorough validation of the results include (i) validation of an external pancreatic cancer cohort (DKFZ) and collection and (ii) in-depth analysis of in-house (LNS) samples of glioma patients. The expertise of the Co-PI (pathologist) will be used to validated predictions and the PI and his team will control that the WSI-features are sensible and not artefacts.

CAE: convolutional autoencoder; **CNN**: convolutional neural network; **DLN**: deep-learning network; **FC**: fully-connected network or layer; **ICA**: independent component analysis; **ML**: machine learning; **ROI**: region of interest; **WSI**: whole slide image.

Preliminary Results at GTEx Dataset



Tile-level Feature Extraction

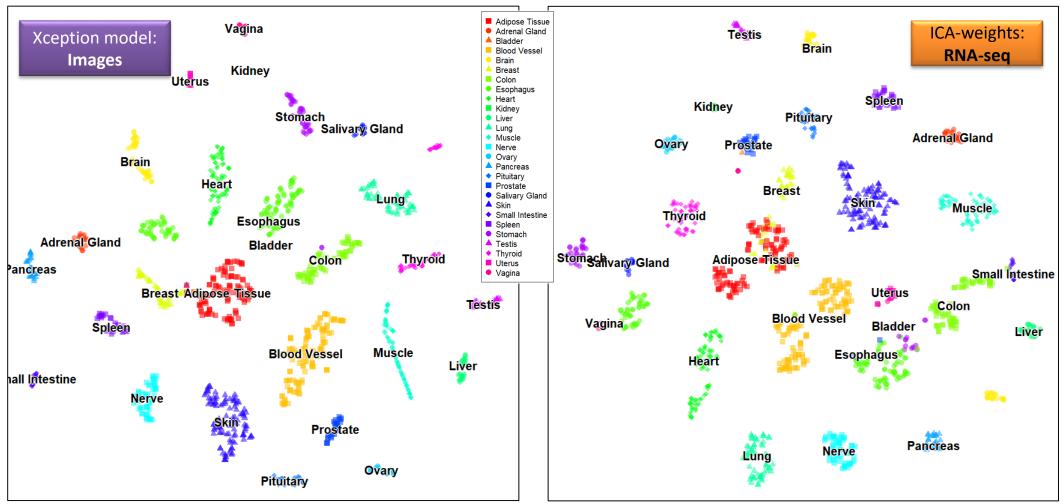


tSNE of tile features

Further analysis:

These features were summarized to slide-level. Only 50% top-correlated tiles were preserved (can be further improved later...)

Slide-level Analysis and ICA



Predictions

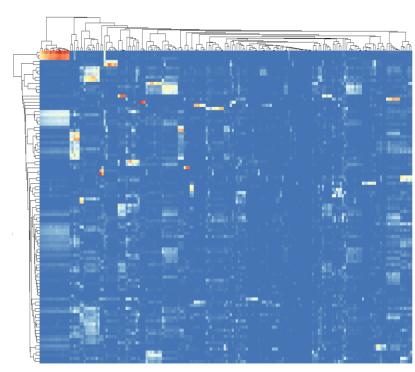
0.8

0.6

0.4

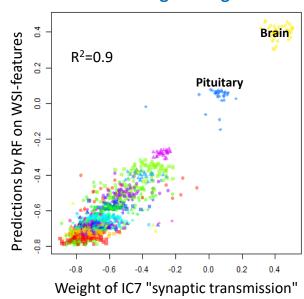
0.2

R² between WSI-features and IC-weights



WSI-features

Predicting IC-weight



GO:BP linked to IC7	FDR
chemical synaptic transmission	8e-28
regulation of membrane potential	8e-28
behavior	4e-22
regulation of ion transport	6e-22
synaptic vesicle cycle	3e-20
cognition	7e-20

Predicting ICA-components

- 20% of the components were predicted with R²>0.9
- 89% with R²>0.5

A deep learning model to predict RNA-Seq expression of tumours from whole slide images

Predicting genes

- 0.4% of the genes showed R²>0.9
- $28\% R^2 > 0.5$

Take Home Message 2

- > Deep Learning Networks could be used for feature extraction
- > Image features could be used to predict deconvolved signals
- > Deconvolved ("clean") signals are better predicted than genes
- Combining molecular and histopathological data may:
 - Help pathologists faster and more accurately classify samples
 - > Improve the accuracy of automatic data analysis

Acknowledgements

Key internal collaborators

Bioinformatics Platform @ Data Integration and Analysis unit

R.Toth*

P.Nazarov*

S-Y.Kim L.Zhang T.Kaoma F.He*

A.Muller

(*) PhD

BIOINFO

Simone

Niclou

Anna Golebiewska

Interns / students

Michel Mittelbronn

Key external collaborators

LSRU, Uni Luxembourg Stephanie Kreis

Institute Curie, France Andrei Zinovyev

DKFZ, Heidelberg Jörg Hoheisel Andrea Bauer Nathalia Giese

A.Aalto* M.Chepeleva B.Nosirov* T.Lukashiv*

Multiomics Data Science research group @ DoCR

Aliaksandra Kakoichankava (PhD student)

Yibioa Wang (MSc)

Thomas Eveno (MSc)

Laurene Picandet (MSc)

Fonds National de la Recherche Luxembourg

Supported by FNR Luxembourg. Grants:

- > C17/BM/11664971/**DEMICS**
- > C21/BM/15739125/**DIOMEDES**

Finally:

