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Heterogeneity

Levels of Heterogeneity in Samples of Cancer Patients

Endothelial 
cells

Inter- and intra-tumor heterogeneity

De Sousa E Melo, et al. EMBO 2013, 14(8):686

Cancer 
sample

Data

Hanahan, Weinberg. Cell2011, 144, 646-74

Cancer cells

Immune cells FibroblastsNormal cells

Native h. of biological tissues

Invasive cancer cells

Technical heterogeneity

Tirosh, et al. Science 2016, 352(6282):189

Neftel, et al. Cell 
2019, 178:835

Dirkse, et al. 
Nat Commun2019, 
10:1787

Clonal evolution

Cell plasticity

Cancer stem-cells
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Invasive Approach 1: Histopathology

Hematoxylin and Eosin (H&E) stain 

Tumor: 1% Normal: 99%

Features of histopathology

ü Gold standard!

ü Cheap (H&E or 2-3 antibodies in IHC)

ü Captures native heterogeneity of tissues

ü Shows inter/intra tumor heterogeneity

ü Often allows precise diagnostics

Immunohistochemistry (IHC)

Ki-67 - proliferation marker

Issues in histopathological image analysis:

ü Tedious analysis

ü In some cancers (e.g. prostate) < 1% of 
the image is cancer-related

ü For some cancers, it does not allow 
precise diagnostics (e.g. some 
astrocytomasvs oligodendrogliomas)

ü Gives non-structured data

Multicolor IHC
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Invasive Approach 2: Molecular Profiling

Gene expression

Isoform detection

Protein abundance

Chimeric proteins

Abundance of 
metabolites

Features of molecular approach

ü Very specific

ü Generate a lot of data

ü Generate structured data

Issues of molecular approach

ü Quite expensive

ü Is sensitive to heterogeneity 
of samples

ü Is sensitive to a technique 

Image: Raja et al https:// www.mdpi.com/1422-0067/22/3/1160/htm 

Mutations

Copy-number 
variation (CNV)

Methylation

Chimeric genes
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Molecular Profiling: Example

Capper et al. Nature2018, 555(7697):469

ü Methylation showed more specificity than histopathology 
identifying types of brain tumors

ü Highly standardized pipeline allowed analysis across many 
cohorts

ü Result: "Heidelberg classifier“ is used by pathologists J

Capper et al. ActaNeuropathologica2018, 136:181
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Improvements

1. Histopathology 2. Molecular methods

Integrate both approaches for better 
patient diagnostics and studying 

molecular processes

ü Automate analysis
ü Transform unstructured data 

(images) to structured (features)

ü Deconvolutemixed signals
ü Integrate various molecular data
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1. Digital Histopathology and Feature Extraction

N slides: 
104 x 105 pixels

1 patient

TypeAI

1 label

The Task

cl
a

ss

Deep convolutional neural network (CNN)

Convolutional Autoencoder(CAE)

Deep Artificial Neural Networks

Classical image analysis approaches

features

Counting nuclei
Edge selection
Cell shape
Cell graph 
….

N x M tiles / patches:
256 x 256 pixels

~ 103-104 tiles

features
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2. Deconvolution: Concept

molecular features

profile S1

profile S2

a b   c    d      e   f

X1 = S1 + S2

a b   c    d      e   f

X2 = 2S1 + S2

a b   c    d      e   f

X3 = S1 + 3S2

Mixing

X= Sx M

1 2 1

1 1 3
M = 

De-mixing

Often called:
- decomposition
- deconvolution

a c f

b d e
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Deconvolution via Matrix Factorization

Malod-Dogninet al. Nat Commun2019, 10:805

Snk Mkm×

Signals / Pattern

Weights / Amplitude

g
e
n
e
s

components

c
o
m

p
o
n
e
n
ts

samples

ºEnm

Data

g
e
n
e
s

samples

Matrix tri -factorization

Multi -omics Factor Analysis

Argelaguetet al. Mol SystBiol 2018, 14:e8124

Stein-O'Brien et al. Trends in Genetics2018, 34(10):790

PCA: principal component analysis
NMF: non-negative matrix factorization
ICA: independent component analysis
etc.
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Deconvolution Methods

PCA NMFICA

Sompairacet al, Int J Mol Sci, 2019 (link)
Cantiniel al, Bioinformatics, 2019 (link)

deterministic stochastic stochastic

+deterministic & fast
+any number of samples
+unsupervised
ςoften biological factors are 
presented by a sum of several 
components
ςpositive and negative values

+correlates with biology
+unsupervised (agnostic)
+quite stable
ςstochastic
ςneeds a lot of samples
ςpositive and negative values

+semi-unsupervised
+easy to interpret
ςstochastic
ςunstable

https://www.mdpi.com/1422-0067/20/18/4414/htm
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821374/
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Research Focus: Deconvolution of Omics Data

Data 
driven!

consICA: Nazarov et al BMC Medical Genomics, 2019 (link)
ICA review:   Sompairac, et alInt J Mol Sci, 2019 (link)
Application:  Golebiewska et al, ActaNeuropathol, 2020

Scherer, Nazarov et al, Nat Protoc, 2020

Snk Mkm×

Independent Signals

Weights

g
e
n
e
s

components

c
o
m

p
o
n
e
n
ts

samples

ICA

multiple

runs

Functional annotation:

linking components to biological 

processes and cell types

genes (ordered)

c
o
n
tr

ib
u
ti
o
n

Genes, contributing 

to one component

S

Enm

Joined Expression Data

g
e
n
e
s

samples

Discovery

dataset 

(TCGA)

Investigation 

dataset

(new patients)

Prognostics:

using Cox regression & 

combine weights into a 

risk score RSj to patient 

survival

ὙὛὮ ὙὌὓȟ
ᶻ

Diagnostics:

using machine learning 

tools to predict classes 

of the samples

Weights M in 

patient groups

patient groups

w
e
ig

h
ts

M

https://bmcmedgenomics.biomedcentral.com/articles/10.1186/s12920-019-0578-4
https://www.mdpi.com/1422-0067/20/18/4414/htm
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GBM Cell Lines

ü We were able to map in-house cell line data onto TCGA dataset (GBM)

ü Some components captured technical factorsĄ
(and thus clean other components from them)

ü Other –relevant biological information: cell cycle, cell migration, presenceof stromal and
immunecells. Wewereableto predictphenotypeof cell linesusingtheir transcriptomes.

Technical/trivial components: 
gender and platforms

D
a
ta

se
ts

Gender
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GBM Cell Lines

Golebiewska A. et al, ActaNeuropathologica, 2020 (link)

ü ICA deconvolution 
is reasonable and 
predicts phenotypic 
behavior of cell 
lines

ü Tumor cells show 
higher mobility in 
xenografts

ESTIMATE was confused 

ICA correctly predicts sample composition & phenotype

Phenotype of cell lines were predicted using 
unsupervised deconvolution of their transcriptomes!

https://link.springer.com/article/10.1007/s00401-020-02226-7
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Melanoma 

Nazarov et al, BMC Medical Genomics, 2019

Cluster

Accuracy Actual cluster

90.0% immune keratine MITF-low

immune 160 9 6

keratine 9 91 6

MITF-low 1 2 47
Cross-validation on 
the same cohort

ὙὛὮ ὙὌὓȟ
ᶻ

j–patient index
i–component index
R2

i–stability of i-th component (from 0 to 1)
Hi–Cox’ log hazard ratio calculated on training set
M*

i,j–element of centered & scaled M-matrix
Independent cohort,
different platform

ü In addition to diagnostics and prognostics, ICA allowed ranking 
patients based on the activity of biological processes: cell cycle, 
signals of leukocytes, etc.
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Melanoma 

Cluster
Compo-

nent

Risk          

(p-value)
Meaning

P
2
P

M

P
4
P

M

P
6
P

M

P
4
N

S

N
H

E
M

RIC2
decreased 

(1.8e-4)
B cells 0.11 0.07 0.02 0.19 0.01

RIC25
decreased 

(2.8e-7)
T cells 0.26 0.06 0.24 0.18 0.00

RIC27 no effect B cells 0.80 0.37 0.31 0.80 0.00

RIC28 no effect response to wounding 0.34 0.57 0.78 0.43 0.84

RIC37 no effect IFN signalling pathway 0.97 0.66 0.99 0.90 1.00

RIC57 no effect monocytes 0.00 0.25 0.24 0.02 0.00

MIC20
decreased 

(1.2e-4)
T cells, chr1q32.2 0.14 0.08 0.37 0.02 0.19

RIC13 no effect cells of stroma 0.81 0.40 0.50 0.86 0.03

RIC49 no effect endothelial cells 0.73 0.12 0.29 0.84 0.00

MIC22 no effect
miR-379/miR-410 cluster, 

chr14q32.2,14q32.31
0.29 0.20 0.27 0.38 0.16

MIC25 no effect
stromal cells; clusters: chr1q24.3, 

5q32, 17p13.1, 21q21.1
0.97 0.85 0.76 0.80 0.26

RIC5
increased 

(5.8e-3)

epidermis development and 

keratinisation
0.92 0.93 0.96 0.92 0.87

RIC7
increased 

(8.9e-6)

epidermis development and 

keratinisation
0.94 0.93 0.93 0.95 0.57

RIC19
increased 

(4.0e-2)

epidermis development and 

keratinisation
1.00 0.62 0.22 1.00 0.93

RIC31
increased 

(2.2e-2)

epidermis development and 

keratinisation
0.98 0.85 0.89 0.99 0.28

MIC9
increased 

(2.9e-2)
skin-specific miRNAs 0.95 0.88 0.87 0.91 0.83

RIC4
increased 

(5.4e-3)
melanin biosynthesis 0.62 0.77 1.00 0.21 0.96

RIC16
decreased 

(5.1e-4)
melanosomes (negative gene list) 0.68 0.77 0.54 0.75 0.39

MIC11 no effect
potential regulators of malignant 

cells, chrXq27.3
0.21 0.96 0.62 0.13 0.48

MIC14
decreased 

(1.5e-2)

potential regulators of 

melanocytes, chrXq26.3
0.01 0.29 0.67 0.29 0.38

RIC55
increased 

(3.0e-2)
cell cycle 0.48 0.46 0.88 0.00 0.53

RIC6
decreased 

(5.5e-3)

potentially linked to neuron 

differentiation
0.43 0.73 0.59 0.46 0.01

MIC1
increased 

(9.4e-4)
regulators of EMT 0.11 0.07 0.02 0.19 0.01

S
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5ŀǘŀ ƛƴǘŜƎǊŀǘƛƻƴΥ Ƴwb! Ҍ Ƴƛwb! Ҍ ΧDeciphering biological processes and cell types

ăNew samples are mapped to the space defined by reference data.

ESTIMATE
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Multi -omics Data Integration via Deconvolution

MOFA: simultaneous analysis

mRNA 
data

miRNA 
data

Methy-
lation
data 

MOFA

S

xS M 

S

Diagnostics Prognostics

Biological signalsCapturing known 
factors

ICA: independent runs

Diagnostics

mRNA 
data

miRNA 
data

Methy-
lation
data 

ICA

ICA

ICA

xS M 

xS M 

xS M 

Prognostics

Integration 
(correlation)

Biological signalsCapturing 
unknown factors
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Pan-Cancer Data Integration

ApproachTCGA
The Cancer Genome Atlas

>11k patients, 33 types of tumors

Å clinical data(age, gender, survival...)
Å mRNA (10k samples, 20k features)
Å miRNA(> 9k samples, ~1k features)
Å methylation (>9k samples, 450k features)

Survival 
analysis (Cox)

mRNA 
data

miRNA 
data

Methy-
lation
data 

ICA

ICA

ICA

xS M 

xS M 

xS M 

Classification 
(RF)

Integration 
(correlation)

Biological 
signals

Here we used consICAwith 100 components & 40 runs 
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Pan-cancer: ICA Components

ICA Results: Cell Cycle

Time
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Pan-cancer analysis of cell cycle

C
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prostate 
adenocarcinoma

low grade 
glioma

glioblastoma 
(IDHwt)

cervical s.c.c& 
endoservicala.c.

Code Study Name

ACC Adrenocortical carcinoma

BLCA Bladder urothelial carcinoma

BRCA Breast invasive carcinoma

CESC Cervical sq. cell carcinoma and endocervical adenocarcinoma

CHOL Cholangiocarcinoma

COAD Colon adenocarcinoma

DLBC Lymphoid neoplasm diffuse large b-cell lymphoma

ESCA Esophageal carcinoma

GBM Glioblastoma multiforme

HNSC Head and neck squamous cell carcinoma

KICH Kidney chromophobe

KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma

LAML Acute myeloid leukemia

LCML Chronic myelogenous leukemia

LGG Brain lower grade glioma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

MESO Mesothelioma

OV Ovarian serous cystadenocarcinoma

PAAD Pancreatic adenocarcinoma

PCPG Pheochromocytoma and paraganglioma

PRAD Prostate adenocarcinoma

READ Rectum adenocarcinoma

SARC Sarcoma

SKCM Skin cutaneous melanoma

STAD Stomach adenocarcinoma

TGCT Testicular germ cell tumors

THCA Thyroid carcinoma

THYM Thymoma

UCEC Uterine corpus endometrial carcinoma

UCS Uterine carcinosarcoma

UVM Uveal melanoma

diffuse 
lymphoma

RIC27: Mitotic Cell Cycle
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Pan-cancer: ICA-based Data Integration

Leukocytes
Angiogenesis

Cell adhesion

Cell cycle

Prognostic marker

mRNA components

miRNA components

methylation comp.

links: r2 > 0.36

0.0 0.4 0.8

0
2

0
4

0

RE

N = 10000   Bandwidth = 0.003256

D
e

n
s
it
y
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Pan-cancer: Classification
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mRNA

miRNA
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Combined

alpha=0.01

Pan-cancer: Prognosis

mRNAis the 
best predictor

Methylation is 
the best predictor

Combinedfeatures give good predictions for 
breast and uterine carcinomas

kidney renal clear 
cell carcinoma

kidney renal papillary 
cell carcinoma

…

Surv= Cox(RS)

ὙὛὮ ὙὌὓȟ
ᶻ

Prediction of survival (same cohort, cross-validation)
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Take Home Message 1

Å ICA-based deconvolution:
üCorrects technical biases
üExtracts "cleaned" biological signals from bulk-sample data
üMaps new samplesinto the space of biologically meaningful components
üExtracts prognostic features and features with classificationpower
üCan be used to integratemulti-omics data 
üDiagnostic & prognosticproperties could be expected for many cancers
üReduce dimensionality

ÅWas validated:
üUsing acceptable computational methods (cross-validation)
üOn cell lines
ü Independent cohortsof patients
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Observation

-0.4 -0.2 0.0 0.2 0.4 0.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

IC1-IC23

IC1: Digestion

IC
2

3
: 
C

e
ll
 c

y
c
le

TCGA-2J-AABP

TCGA-3A-A9IR
TCGA-F2-6880

TCGA-F2-A7TX

Sample projection on ICs

IC: Digestion

IC
: 

C
e

ll 
cy

cl
e

ICA results of mRNA expression data from TCGA-PAAD cohort
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MEDEA: Project Overview

(a) Deconvolution of the omics data using developed tool
consICA. This method was alreadydevelopedand applied to
entire GTEx(mRNA),TCGA(mRNAand meDNA), and DKFZ
(mRNA)cohorts.

CAE: convolutional autoencoder; CNN: convolutional neural network; FC: fully-connected network or layer; 
ICA: independent component analysis; ML: machine learning; ROI: region of interest; WSI: whole slide image.

(b) Image analysisand feature extraction starts with a pre-
trained Xceptionmodelandusesweaklysupervisedtraining to
fine-tunemodel’sparameters. Twostrategieswill be compared
in the project: strategy1 is a semi-supervisedone usingCNN-
basedclassifierandstrategy2–completelyunsupervisedusing
CAE. Xception will be used as an initial estimation of the
encoder’sparameters.

(c) Integration of ICA-weightsand imagefeatureswill be done
either by a classicalML-approach(linear regressionor random
forest regression)or bya FCneuralnetwork.

(d) A thorough validation of the results include(i) validationof
an externalpancreaticcancercohort (DKFZ)andcollectionand
(ii) in-depth analysis of in-house (LNS)samples of glioma
patients. Theexpertiseof the Co-PI (pathologist)will be used
to validated predictionsand the PI and his team will control
that the WSI-featuresaresensibleandnot artefacts.
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Preliminary Results

670+ patients 27 organs

15k+ slides 17k+ RNA-seq

GTExData:

Tile features

Slide features

ICA

Weights of ICs

Functional 
annotation 

of ICs

Integration & 
predictions

output

input

"normal" tissues

Sample: 
1278 slides

480k tiles 256 x 256 px

zoom x10, 
~10k x 10k px

Xception
model

Classification



26Computational Systems Biology of Cancer, Paris 2022-09-26 26

Tile-level Feature Extraction

Further analysis:
These features were summarized to slide-level. Only 50% top-
correlated tiles were preserved (can be further improved later…)

Examples of tiles classified with top certainty and co-localized with class medoids

adipose brain breast

spleenpancreas small intestine

liver

pituitary

Xception, after parameter fine-tuning on organ classification task, 
transform each tile to ~150 non-zero features.
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Slide-level Analysis and ICA

Xception
model: Images

ICA-weights: 
RNA-seq
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Predictions

R2 between WSI-features and IC-weights R2 Predicting IC-weight

Weight of IC7 "synaptic transmission"
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GO:BP linked to IC7 FDR

chemical synaptic
transmission

8e-28

regulation of 
membrane potential

8e-28

behavior 4e-22

regulation of ion
transport

6e-22

synaptic vesicle cycle3e-20

cognition 7e-20

R2=0.9

Predicting ICA-components
Å 20% of the components were predicted with R2>0.9 
Å 89% –with R2>0.5 

Å 0.4% of the genes showed R2>0.9 
Å 28% –R2>0.5

Predicting genes
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Take Home Message 2

üDeep Learning Networks could be used for feature extraction

ü Image features could be used to predict deconvolvedsignals

üDeconvolved("clean") signals are better predicted than genes 
(and related GO gene sets)

üCombining molecular and his histopathological data may:

üHelp pathologists faster and more accurate classify samples

ü Improve accuracy of automatic data analysis

üSpatial transcriptomics, perhaps is our future J
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