

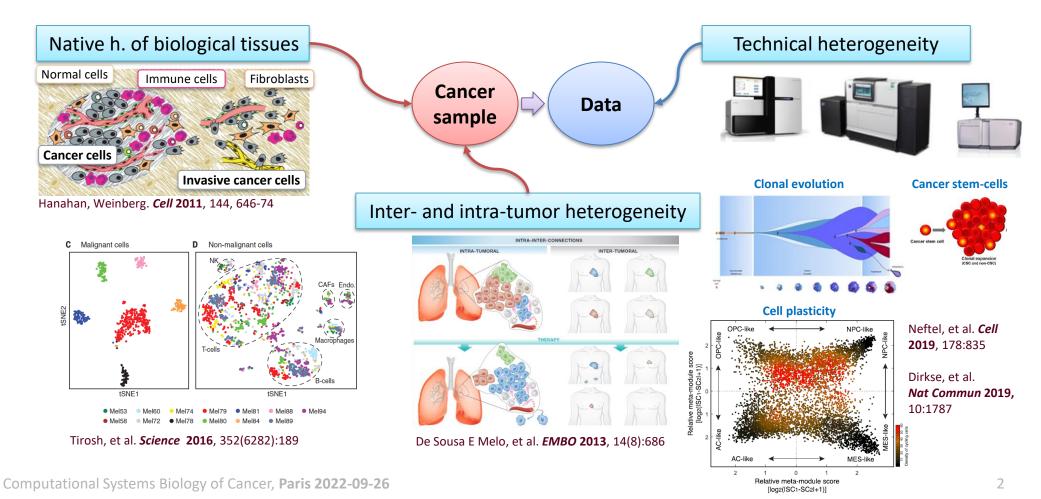
Combination of Multi-modal Data for Improved Patient Characterization

Petr Nazarov

5th course on Computational Systems Biology of Cancer September 26-30, 2022 – Institut Curie, Paris, France

Heterogeneity

Levels of Heterogeneity in Samples of Cancer Patients



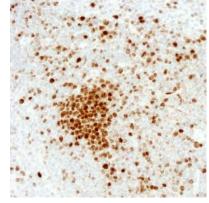
Hematoxylin and Eosin (H&E) stain



Features of histopathology

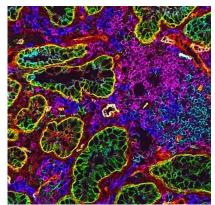
- Gold standard!
- Cheap (H&E or 2-3 antibodies in IHC)
- Captures native heterogeneity of tissues
- Shows inter/intra tumor heterogeneity
- Often allows precise diagnostics

Immunohistochemistry (IHC)



Ki-67 - proliferation marker

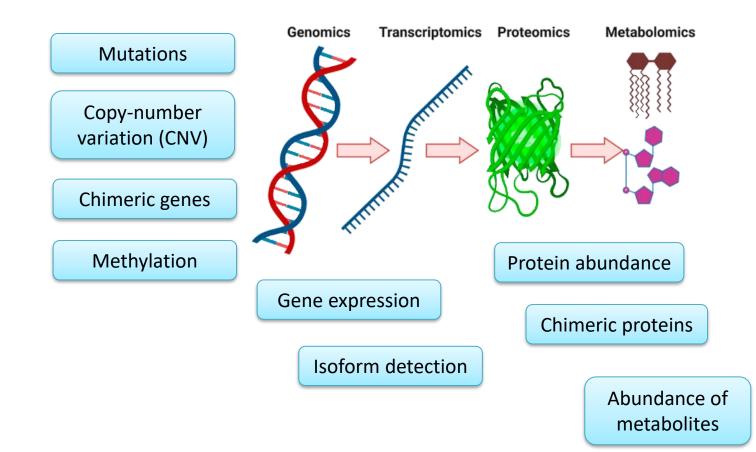
Multicolor IHC



Issues in histopathological image analysis:

- Tedious analysis
- In some cancers (e.g. prostate) < 1% of the image is cancer-related
- For some cancers, it does not allow precise diagnostics (e.g. some astrocytomas vs oligodendrogliomas)
- Gives non-structured data

Invasive Approach 2: Molecular Profiling



Features of molecular approach

- Very specific
- Generate a lot of data
- Generate structured data

Issues of molecular approach

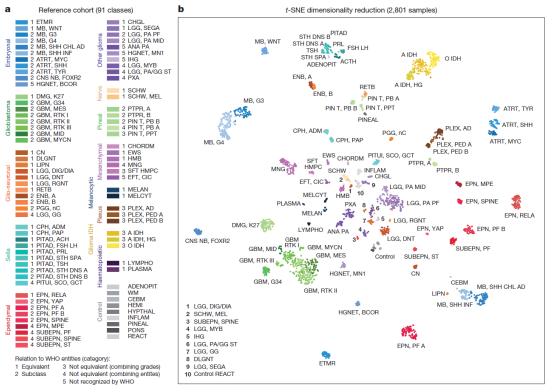
- Quite expensive
- Is sensitive to heterogeneity of samples

4

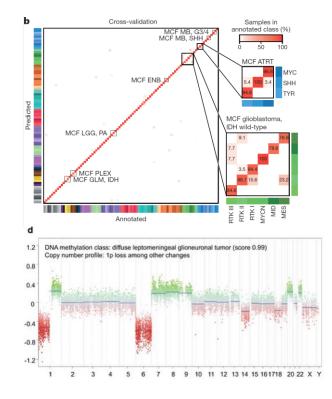
Is sensitive to a technique

Molecular Profiling: Example

DNA methylation-based classification of central nervous system tumours

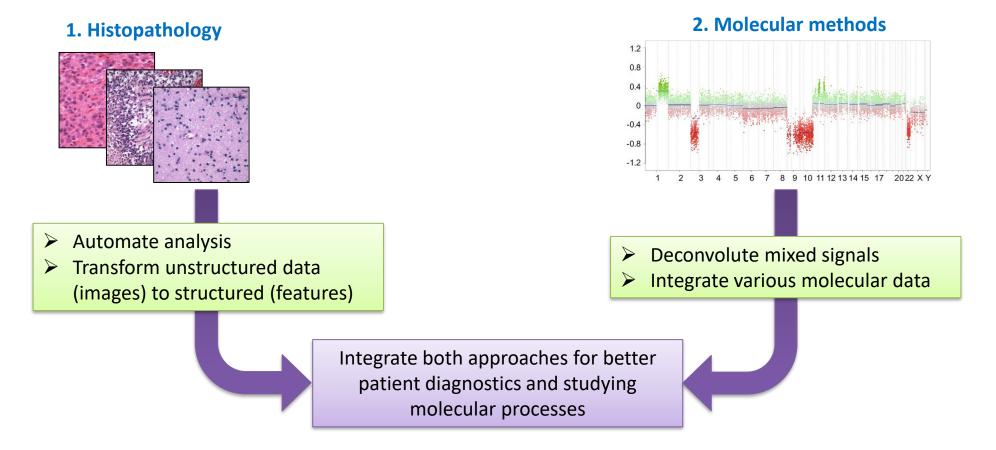


Capper et al. *Nature* 2018, 555(7697):469 Capper et al. *Acta Neuropathologica* 2018, 136:181



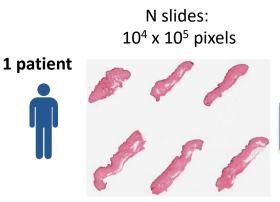
- Methylation showed more specificity than histopathology identifying types of brain tumors
- Highly standardized pipeline allowed analysis across many cohorts
- Result: "Heidelberg classifier" is used by pathologists is

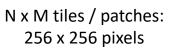
Improvements

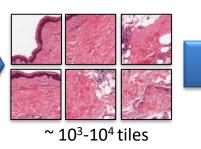


1. Digital Histopathology and Feature Extraction

The Task



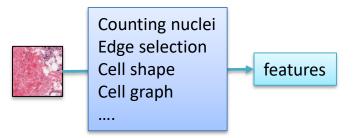




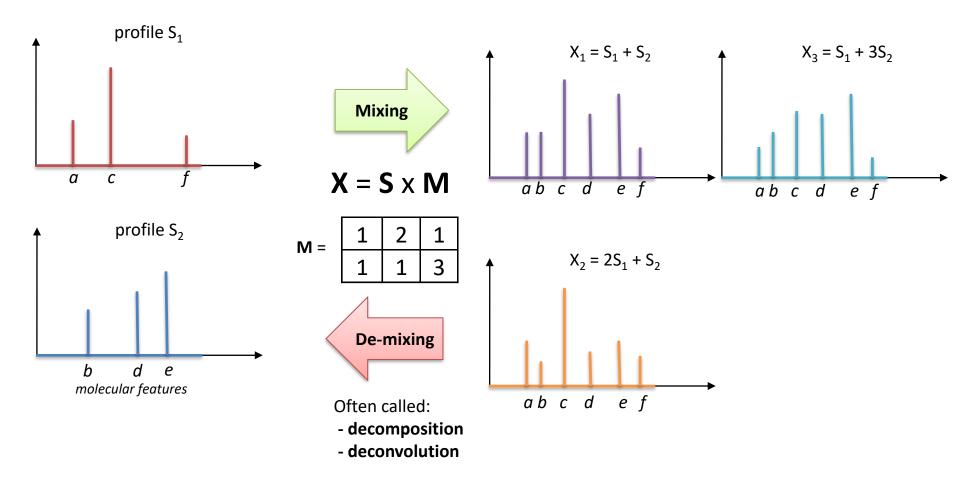
Deep Artificial Neural Networks Deep convolutional neural network (CNN) class features

Convolutional Autoencoder (CAE)

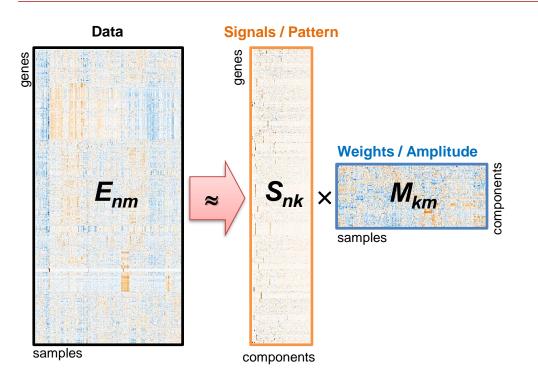
Classical image analysis approaches



2. Deconvolution: Concept

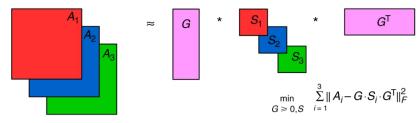


Deconvolution via Matrix Factorization



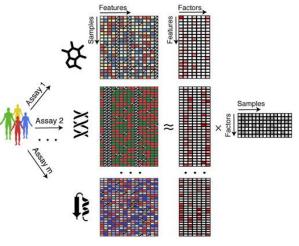
PCA: principal component analysis **NMF**: non-negative matrix factorization **ICA**: independent component analysis *etc.*

Matrix tri-factorization



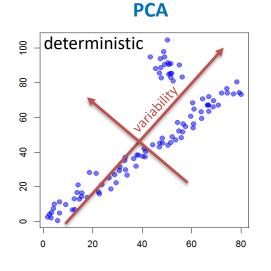
Malod-Dognin et al. Nat Commun 2019, 10:805

Multi-omics Factor Analysis

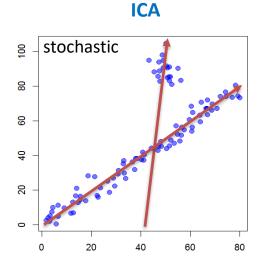


Argelaguet et al. Mol Syst Biol 2018, 14:e8124

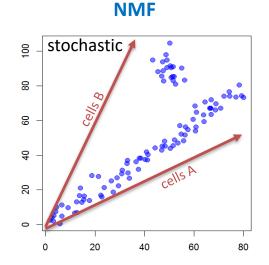
Deconvolution Methods



- + deterministic & fast
- + any number of samples
- + unsupervised
- often biological factors are presented by a sum of several components
- positive and negative values

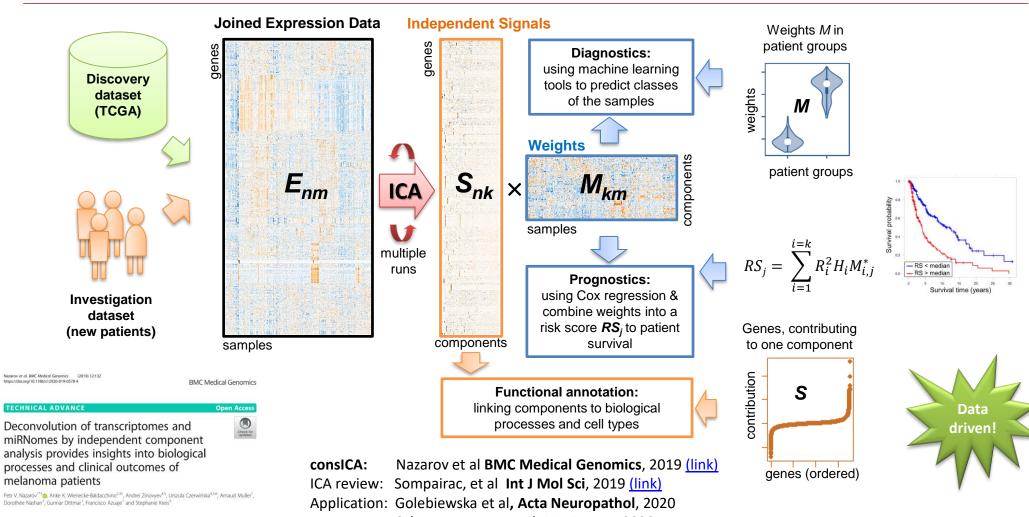


- + correlates with biology
- + unsupervised (agnostic)
- + quite stable
- stochastic
- needs a lot of samples
- positive and negative values



- + semi-unsupervised
- + easy to interpret
- stochastic
- unstable

Research Focus: Deconvolution of Omics Data

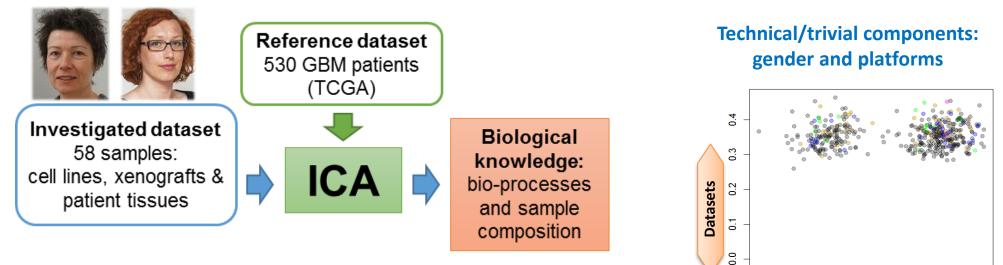


Computational Systems Biology of Cancer, Paris 2022-09-2Scherer, Nazarov et al, Nat Protoc, 2020

LUXEMBOURG

INSTITUTE OF HEALTH

GBM Cell Lines



<u>.</u>

-0.08

-0.06

-0.04 -0.02 0.00

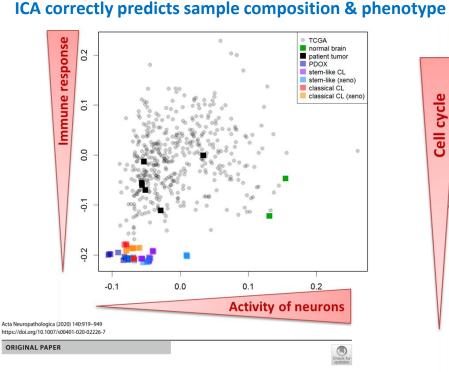
Gender

0.02

0.04

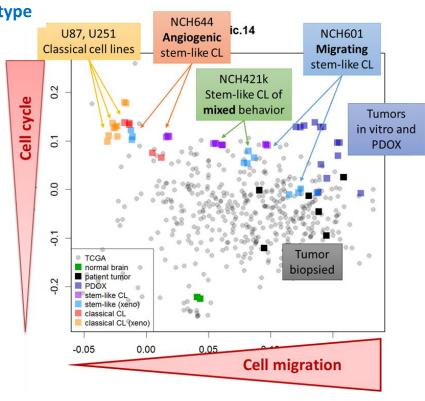
- We were able to map in-house cell line data onto TCGA dataset (GBM)
- Some components captured *technical factors* →
 (and thus clean other components from them)
- Other relevant biological information: cell cycle, cell migration, presence of stromal and immune cells. We were able to predict phenotype of cell lines using their transcriptomes.

GBM Cell Lines



Patient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology

Anna Golebiewska¹ · Ann-Christin Hau¹ · Anaïs Oudin¹ · Daniel Stieber^{1,2} · Yahaya A. Yabo^{1,3} . Virginie Baus¹ · Vanessa Barthelemy¹ · Eliane Klein¹ · Sebastien Bougnaud¹ · Olivier Keunen^{1,4} · May Wantz¹ · Alessandro Michelucci^{1,5,6} · Virginie Neirinckx¹ · Arnaud Muller⁴ · Tony Kaoma⁴ · Petr V. Nazarov⁴ · Francisco Azuaje⁶ · Alfonso De Falco^{2,3,7} · Ben Flies² · Lorraine Richart^{3,7,8,9} · Suresh Poovathingal⁶ · Thais Arns⁶ · Kamil Grzyb⁶ · Andreas Mock^{10,11,12,13} · Christel Herold-Mende¹⁰ · Anne Steino^{14,15} · Dennis Brown^{14,15} · Patrick May⁶ · Hrvoje Miletic^{16,17} · Tathiane M. Malta¹⁸ · Houtan Noushmehr¹⁸ · Yong-Jun Kwon⁹ · Winnie Jahn^{19,20} · Barbara Klink^{2,319,20,21} · Georgette Tanner²² · Lucy F. Stead²² · Michel Mittelbronn^{6,7,8,9} · Alexander Skupin⁶ · Frank Hertl^{4,23} · Rolf Bjerkviq^{1,16} · Simone P. Niclou¹¹⁶



Golebiewska A. et al, Acta Neuropathologica, 2020 (link)

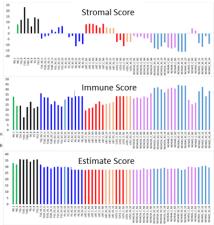
Phenotype of cell lines were predicted using unsupervised deconvolution of their transcriptomes!

ICA deconvolution is reasonable and predicts phenotypic behavior of cell lines

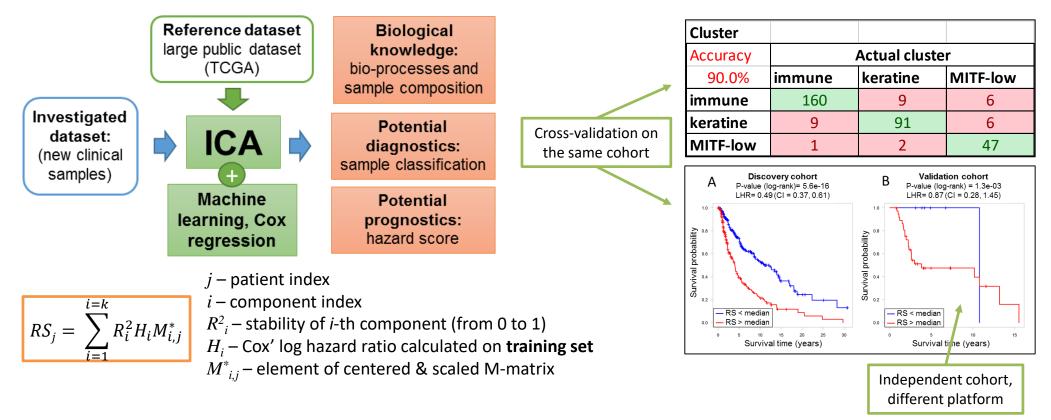
 \geq

 Tumor cells show higher mobility in xenografts

ESTIMATE was confused



Melanoma



In addition to diagnostics and prognostics, ICA allowed ranking patients based on the activity of biological processes: cell cycle, signals of leukocytes, etc.

Nazarov et al, BMC Medical Genomics, 2019

Melanoma

Deciphering biological processes and cell types

Cluster	Compo- nent	Risk (p-value)	Meaning	P2PM	P4PM	РбРМ	P4NS	NHEM
	RIC2	decreased (1.8e-4)	B cells	0.11	0.07	0.02	0.19	0.01
	RIC25	decreased (2.8e-7)	T cells	0.26	0.06	0.24	0.18	0.00
nne	RIC27	no effect	B cells	0.80	0.37	0.31	0.80	0.00
Immune	RIC28	no effect	response to wounding	0.34	0.57	0.78	0.43	0.84
	RIC37	no effect	IFN signalling pathway	0.97	0.66	0.99	0.90	1.00
	RIC57	no effect	monocytes	0.00	0.25	0.24	0.02	0.00
	MIC20	decreased (1.2e-4)	T cells, chr1q32.2	0.14	0.08	0.37	0.02	0.19
Stromal and angiogenic	RIC13	no effect	cells of stroma	0.81	0.40	0.50	0.86	0.03
	RIC49	no effect	endothelial cells	0.73	0.12	0.29	0.84	0.00
	MIC22	no effect	miR-379/miR-410 cluster, chr14q32.2,14q32.31	0.29	0.20	0.27	0.38	0.16
	MIC25	no effect	stromal cells; clusters: chr1q24.3, 5q32, 17p13.1, 21q21.1	0.97	0.85	0.76	0.80	0.26
Skin-related	RIC5	increased (5.8e-3)	epidermis development and keratinisation	0.92	0.93	0.96	0.92	0.87
	RIC7	increased (8.9e-6)	epidermis development and keratinisation	0.94	0.93	0.93	0.95	0.57
	RIC19	increased (4.0e-2)	epidermis development and keratinisation	1.00	0.62	0.22	1.00	0.93
š	RIC31	increased (2.2e-2)	epidermis development and keratinisation	0.98	0.85	0.89	0.99	0.28
	MIC9	increased (2.9e-2)	skin-specific miRNAs	0.95	0.88	0.87	0.91	0.83
Melanocytes	RIC4	increased (5.4e-3)	melanin biosynthesis	0.62	0.77	1.00	0.21	0.96
	RIC16	decreased (5.1e-4)	melanosomes (negative gene list)	0.68	0.77	0.54	0.75	0.39
	MIC11	no effect	potential regulators of malignant cells, chrXq27.3	0.21	0.96	0.62	0.13	0.48
	MIC14	decreased (1.5e-2)	potential regulators of melanocytes, chrXq26.3	0.01	0.29	0.67	0.29	0.38
Other	RIC55	increased (3.0e-2)	cell cycle	0.48	0.46	0.88	0.00	0.53
	RIC6	decreased (5.5e-3)	potentially linked to neuron differentiation	0.43	0.73	0.59	0.46	0.01
	MIC1	increased (9.4e-4)	regulators of EMT	0.11	0.07	0.02	0.19	0.01

ESTIMATE

nature _____

Article | OPEN | Published: 11 October 2013

 $r^2 = 0.916$

score

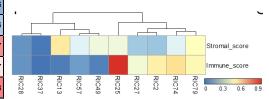
mmune

Inferring tumour purity and stromal and immune cell admixture from expression

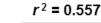
data

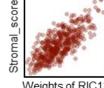
V

Kosuke Yoshihara, Maria Shahmoradgoli, Emmanuel Martínez, Rahulsimham Vegesna, Hoon Kim, Wandaliz Torres-Garcia, Victor Treviño, Hui Shen, Peter W. Laird, Douglas A. Levine, Scott L. Carter, Gad Getz, Katherine Stemke-Hale, Gordon B. Mills & Roel G.W. Verhaak



Nature Communications 4, Article number: 2612 (2013) Download Citation

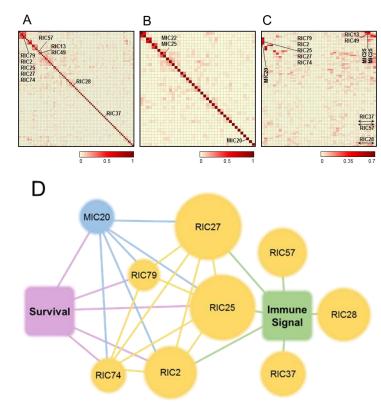




score

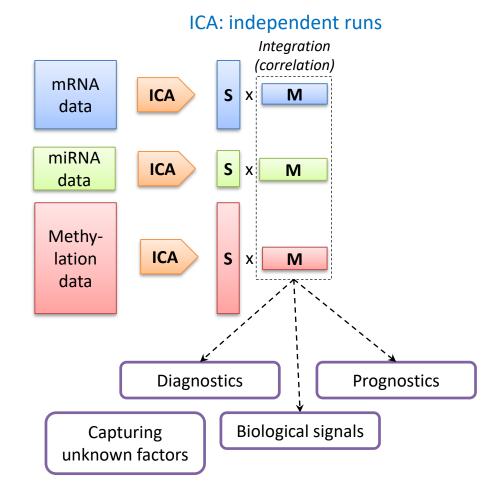
Weights of RIC25 Weights of RIC13

Data integration: mRNA + miRNA + ...

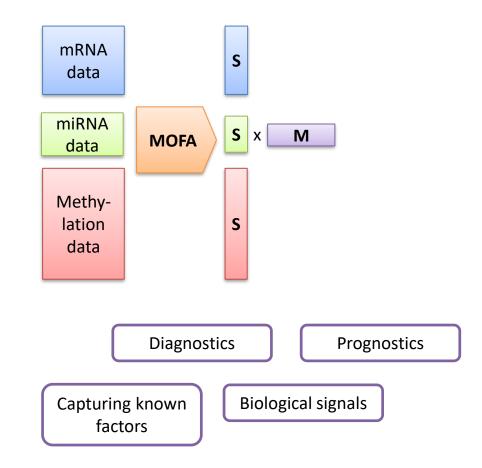


 \leftarrow New samples are mapped to the space defined by reference data.

Multi-omics Data Integration via Deconvolution



MOFA: simultaneous analysis



LUXEMBOURG

INSTITUTE OF HEALTH

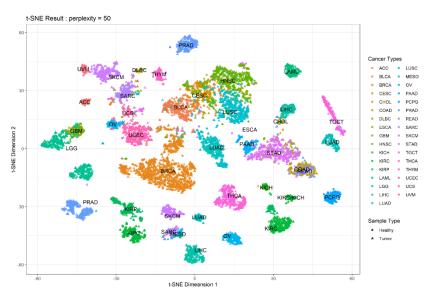
Pan-Cancer Data Integration

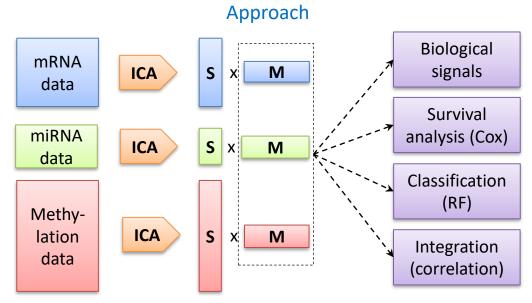
TCGA

The Cancer Genome Atlas

>11k patients, 33 types of tumors

- clinical data (age, gender, survival...)
- mRNA (10k samples, 20k features)
- miRNA (> 9k samples, ~1k features)
- methylation (>9k samples, 450k features)



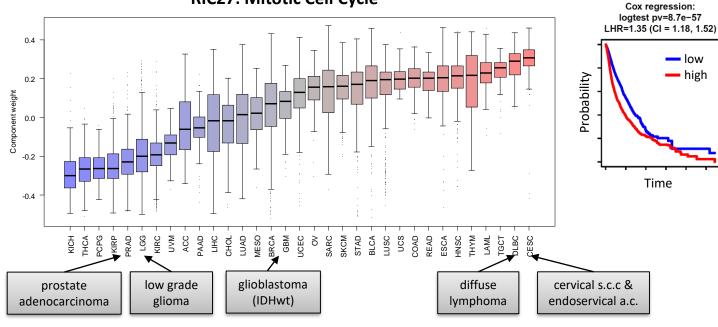


Here we used *consICA* with 100 components & 40 runs

Pan-cancer: ICA Components

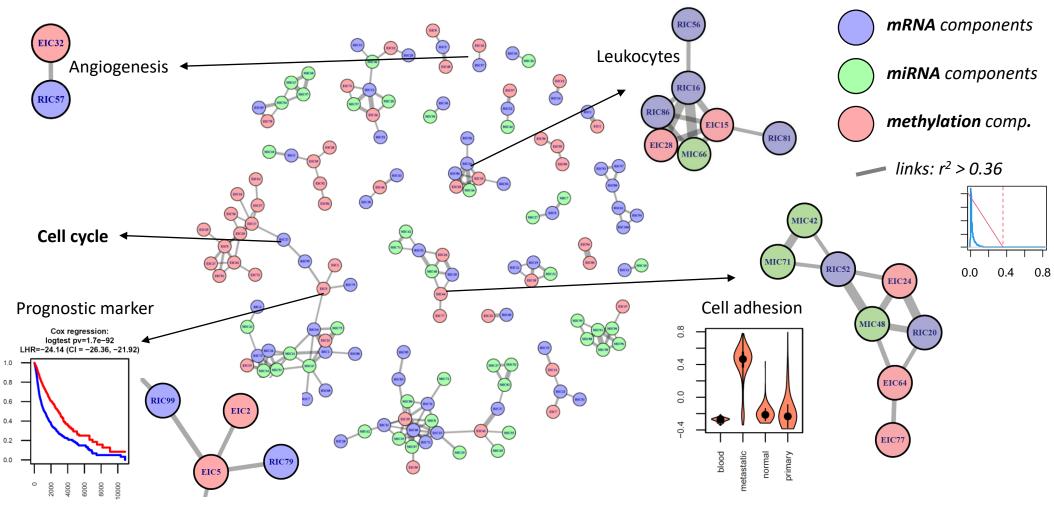
ICA Results: Cell Cycle

RIC27: Mitotic Cell Cycle

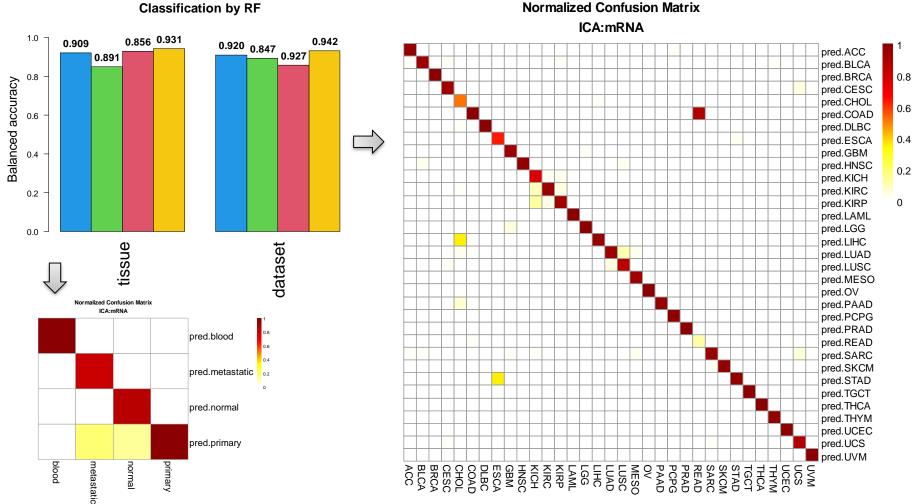


Code 💌	Study Name 🔽				
ACC	Adrenocortical carcinoma				
BLCA	Bladder urothelial carcinoma				
BRCA	Breast invasive carcinoma				
CESC	Cervical sq. cell carcinoma and endocervical adenocarcinoma				
CHOL	Cholangiocarcinoma				
COAD	Colon adenocarcinoma				
DLBC	Lymphoid neoplasm diffuse large b-cell lymphoma				
ESCA	Esophageal carcinoma				
GBM	Glioblastoma multiforme				
HNSC	Head and neck squamous cell carcinoma				
КІСН	Kidney chromophobe				
KIRC	Kidney renal clear cell carcinoma				
KIRP	Kidney renal papillary cell carcinoma				
LAML	Acute myeloid leukemia				
LCML	Chronic myelogenous leukemia				
LGG	Brain lower grade glioma				
LIHC	Liver hepatocellular carcinoma				
LUAD	Lung adenocarcinoma				
LUSC	Lung squamous cell carcinoma				
MESO	Mesothelioma				
ov	Ovarian serous cystadenocarcinoma				
PAAD	Pancreatic adenocarcinoma				
PCPG	Pheochromocytoma and paraganglioma				
PRAD	Prostate adenocarcinoma				
READ	Rectum adenocarcinoma				
SARC	Sarcoma				
SKCM	Skin cutaneous melanoma				
STAD	Stomach adenocarcinoma				
TGCT	Testicular germ cell tumors				
THCA	Thyroid carcinoma				
тнүм	Thymoma				
UCEC	Uterine corpus endometrial carcinoma				
UCS	Uterine carcinosarcoma				
UVM	Uveal melanoma				

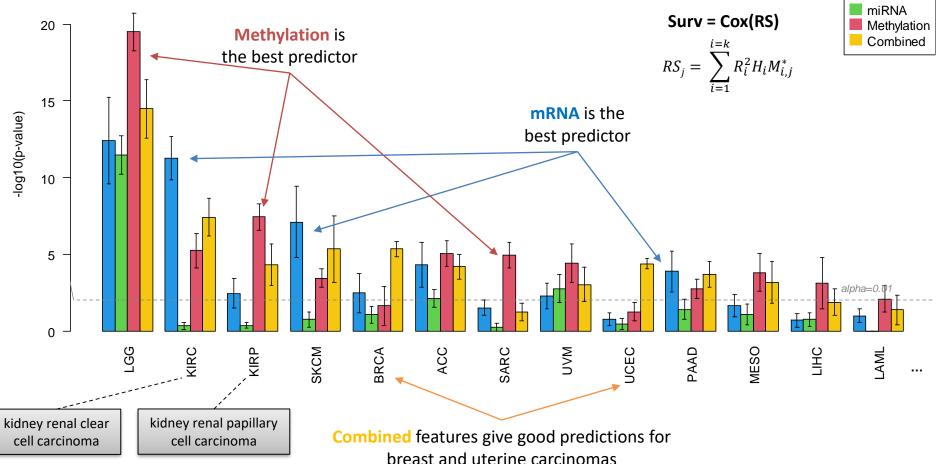
Pan-cancer: ICA-based Data Integration



Pan-cancer: Classification



Pan-cancer: Prognosis

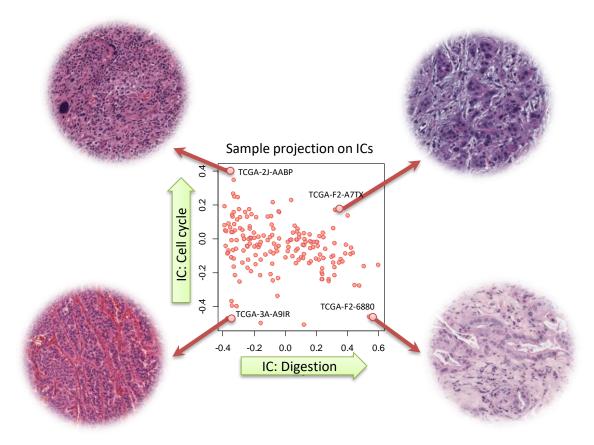


• ICA-based deconvolution:

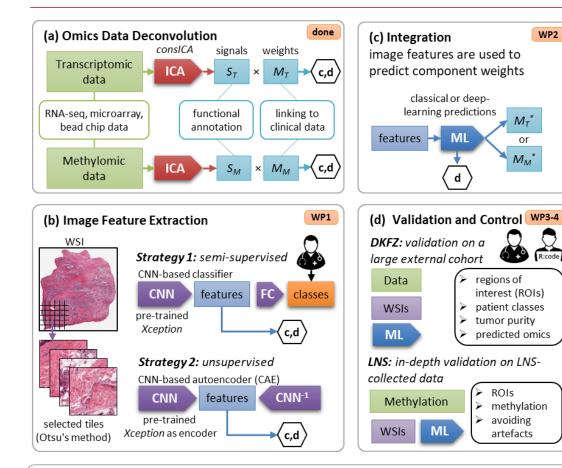
- Corrects technical biases
- Extracts "cleaned" biological signals from bulk-sample data
- > Maps new samples into the space of biologically meaningful components
- Extracts prognostic features and features with classification power
- Can be used to integrate multi-omics data
- Diagnostic & prognostic properties could be expected for many cancers
- Reduce dimensionality
- Was validated:
 - Using acceptable computational methods (cross-validation)
 - ➤ On cell lines
 - Independent cohorts of patients

Observation

ICA results of mRNA expression data from TCGA-PAAD cohort



MEDEA: Project Overview



CAE: convolutional autoencoder; CNN: convolutional neural network; FC: fully-connected network or layer; ICA: independent component analysis; ML: machine learning; ROI: region of interest; WSI: whole slide image.

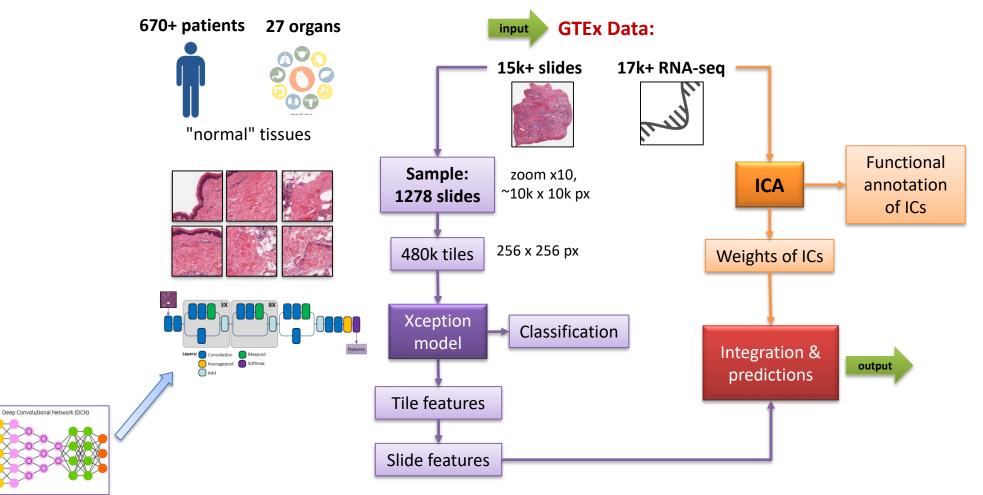
(a) Deconvolution of the omics data using developed tool *consICA*. This method was already developed and applied to entire GTEx (mRNA), TCGA (mRNA and meDNA), and DKFZ (mRNA) cohorts.

(b) Image analysis and feature extraction starts with a pretrained *Xception* model and uses weakly supervised training to fine-tune model's parameters. Two strategies will be compared in the project: strategy 1 is a semi-supervised one using CNNbased classifier and strategy 2 – completely unsupervised using CAE. *Xception* will be used as an initial estimation of the encoder's parameters.

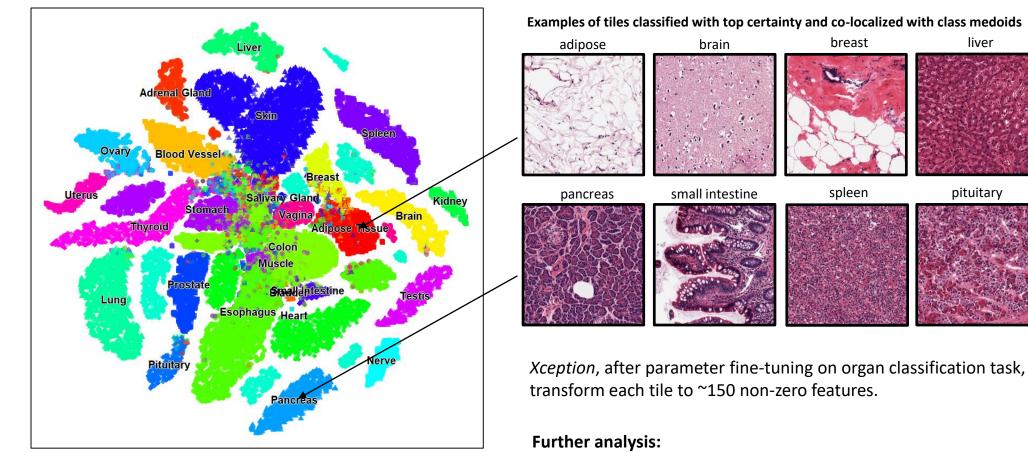
(c) Integration of ICA-weights and image features will be done either by a classical ML-approach (linear regression or random forest regression) or by a FC neural network.

(d) A thorough validation of the results include (i) validation of an external pancreatic cancer cohort (DKFZ) and collection and (ii) in-depth analysis of in-house (LNS) samples of glioma patients. The expertise of the Co-PI (pathologist) will be used to validated predictions and the PI and his team will control that the WSI-features are sensible and not artefacts.

Preliminary Results



Tile-level Feature Extraction



These features were summarized to slide-level. Only 50% topcorrelated tiles were preserved (can be further improved later...)

Slide-level Analysis and ICA

Adipose Tissue Vagina Testis • Adrenal Gland **ICA-weights: Xception** 🔺 Bladder Brain Blood Vessel **RNA-seq** model: Images Brain Kidney Breast Uterus Colon Esophagus Spleen Heart **Kidney** Kidney Stomach Pituitary Liver Salivary Gland 🔺 Luna Adrenal Gland Muscle Ovary Prostate Nerve Ovary Brain A Pancreas Pituitary Heart Prostate Breast Salivary Gland una A Skin Muscle Small Intestine Thyroid Esophagus Spleen Stomach Adrenal Gland Testis Bladder Thyroid Thyroid Stom Schwarg Gland Adipose Tissue Colon Uterus Pancreas Small Intestine Vagina Breast Adipose Tissue Uterus Testis Colon Blood Vessel Vagina Bladder Spleen Liver -55 Blood Vessel Muscle Esophagus Heart Liver hall Intestine **R**., Nerve Skir Prostate Pancreas Nerve Lung Ovary Pituitary

LUXEMBOURG

INSTITUTE OF HEALTH

Predictions

FDR

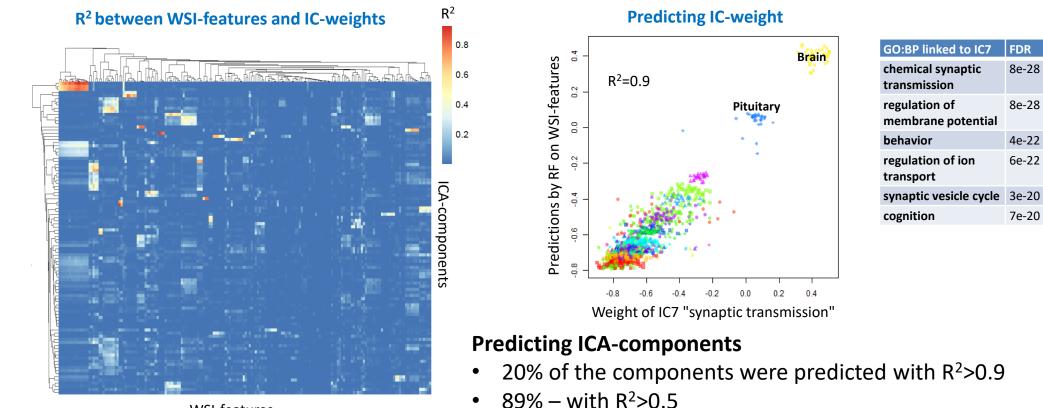
8e-28

8e-28

4e-22

6e-22

7e-20



WSI-features

A deep learning model to predict RNA-Seq expression of tumours from whole slide images

Predicting genes

- 0.4% of the genes showed $R^2 > 0.9$
- $28\% R^2 > 0.5$

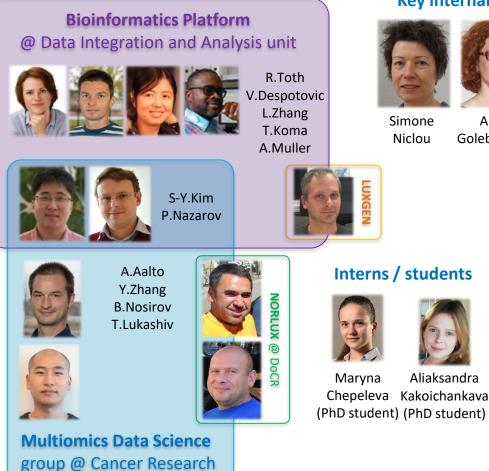
Computational Systems Biology of Cancer, Paris 2

Benoît Schmauch ¹², Alberto Romagnoni^{1,4}, Elodie Pronier^{1,4}, Charlie Saillard¹, Pascale Maillé^{2,3}, 🗂 Julien Calderaro^{2,3}, Aurélie Kamoun 👩 ¹, Meriem Sefta¹, Sylvain Toldo¹, Mikhail Zaslavskiy¹, Thomas Clozel 👩 ¹, Matahi Moarii¹ Pierre Courtiol^{1,5} & Gilles Wainrih^{1,5}

- Deep Learning Networks could be used for feature extraction
- Image features could be used to predict deconvolved signals
- Deconvolved ("clean") signals are better predicted than genes (and related GO gene sets)
- > Combining molecular and his histopathological data may:
 - > Help pathologists faster and more accurate classify samples
 - > Improve accuracy of automatic data analysis

Spatial transcriptomics, perhaps is our future ③

Acknowledgements



Key internal collaborators

Simone Niclou

Michel Anna Golebiewska Mittelbronn

Yibioa

Wang

(MSc)

Key external collaborators

LSRU, Uni Luxembourg Stephanie Kreis

Institute Curie, France Andrei Zinovyev

DKFZ, Heidelberg Jörg Hoheisel Andrea Bauer Nathalia Giese

Thomas Eveno (MSc)

Fonds National de la **Recherche** Luxembourg

Supported by FNR Luxembourg. Grants:

C17/BM/11664971/DEMICS

C21/BM/15739125/DIOMEDES

Computational Systems Biology of Cancer, Paris 2022-09-26

30