LUXEMBOURG INSTITUTE OF HEALTH

Multiomics Data Science Research Group

DeepHisto: first results and discussing potential collaboration in brain histopathology

Sang Yoon KIM, Ann-Christin HAU, Michel MITTELBRONN, <u>Petr NAZAROV</u>

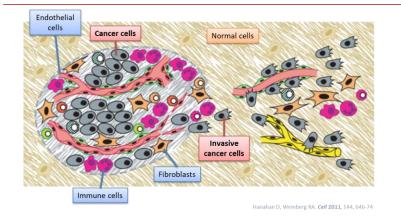
Department of Oncology, LIH National Center of Pathology, LNS

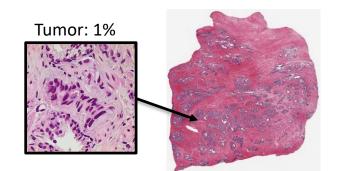
petr.nazarov@lih.lu

2021-10-20

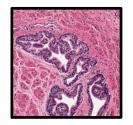
Online meeting

Background





Normal: 99%



- Native heterogeneity of tissues
- Inter/intra tumor heterogeneity

Issues in histopathological image analysis:

- > Tedious analysis
- In some cancers (e.g. prostate) < 1% of the image is cancer-related
- Standard approaches require supervised
 "pixel-wise" labelling almost unrealistic

 8 slides:
 50 000 x 80 000 pixels
 8 x 1284 tiles / patches:

 1 patient
 224 x 224 pixels

 Image: Constraint of the state of t

DLN – deep learning network (model)

Check for update

Clinical-grade computational pathology using weakly supervised deep learning on whole slide images

Gabriele Campanella^{1,2}, Matthew G. Hanna¹, Luke Geneslaw¹, Allen Miraflor¹, Vitor Werneck Krauss Silva¹, Klaus J. Busam¹, Edi Brogi¹, Victor E. Reuter¹, David S. Klimstra¹ and Thomas J. Fuchs¹,^{2,*}

Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

Joel Saltz,^{1,*} Rajarsi Gupta,^{1,4} Le Hou,² Tahsin Kurc,¹ Pankaj Singh,⁹ Vu Nguyen,² Dimitris Samaras,² Kenneth R. Shroyer,⁴ Tianhao Zhao,⁴ Rebecca Batiste,⁴ John Van Arnam,⁵ The Cancer Genome Atlas Research Network, Ilya Shmulevich,⁶ Arvind U.K. Rao,^{3,7} Alexander J. Lazar,⁸ Ashish Sharma,⁹ and Vésteinn Thorsson^{6,10,*}

Article AI-based pathology predicts origins for cancers of unknown primary

2021-10-20

 https://doi.org/10.1038/s41586-021-03512-4
 Ming Y. Lu^{12,3}, Tiffany Y. Chen^{12,5}, Drew F. K. Williamson^{12,5}, Melissa Zhao³, Maha Shady^{12,3,4},

 Received: 27 June 2020
 Jana Lipkova^{12,3} & Faisal Mahmood^{12,3}

A deep learning model to predict RNA-Seq expression of tumours from whole slide images

Benoît Schmauch () ¹^[2], Alberto Romagnoni^{1,4}, Elodie Pronier^{1,4}, Charlie Saillard¹, Pascale Maillé^{2,3}, Julien Calderaro^{2,3}, Aurélie Kamoun () ¹, Meriem Sefta¹, Sylvain Toldo¹, Mikhail Zaslavskiy¹, Thomas Clozel () ¹, Matahi Moarii¹, Pierre Courtiol^{1,5} & Gilles Wainrib^{1,5}

ARTICLE

https://doi.org/10.1038/s41467-021-21727-x OPEN

Joint analysis of expression levels and histological images identifies genes associated with tissue morphology

Jordan T. Ash^{1,4}, Gregory Darnell^{2,4}, Daniel Munro ⁰^{2,4} & Barbara E. Engelhardt ⁰^{1,3⊠}

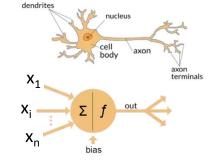
Interesting ideas:

- weakly supervised learning
- attention-based learning
- predicting molecular signatures

We started a small project DeepHisto in deep-learning applied to neuro-oncology

Classical Artificial Neural Networks

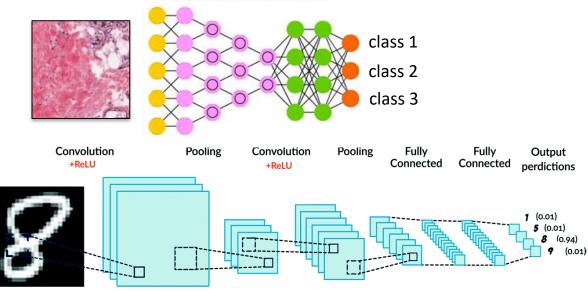
out = $f(\Sigma w_i x_i + bias)$

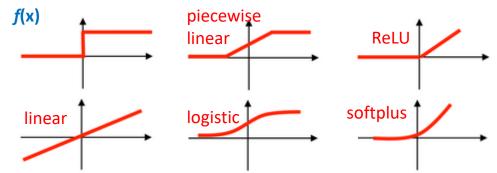


Convolutional networks

2021-10-20

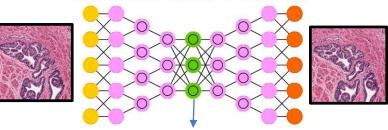
Deep Convolutional Network (DCN)





Autoencoders

Deep Convolutional Inverse Graphics Network (DCIGN)



Latent variables (coded image)

https://towardsdatascience.com/

http://rasbt.github.io/mlxtend/user_guide/general_concepts/activation-functions/

Deep Learning Networks

VGG16 model architecture NASNet-A-Large convl SE-ResNeXt-101(32x4d) Inception-ResNet-v2 SENet-154 80 ception-v4 SE-ResNeXt-50(32x4d) DualPathNet-131 Xception PathNet-98 SE-ResNet-152 ResNeXt-101(64x4d) SE-ResNet-10 conv2 esNeXt-101(32x4d) ResNet-152 SE-ResNet-50 Inception-v3 FB-ResNet-152 ResNet-101 DenseNet-201 DenseNet-161 Caffe-ResNet-101 ResNet-50 VGG-19_BN conv3 DualPathNet-68 VGG-16_BN 75 DenseNet-169 conv4 DenseNet-121 conv5 Top-1 accuracy [%] fc6 fc7 fc8 BN-Inception ResNet-34 VGG-13_BN $1 \times 1 \times 1000$ $1 \times 1 \times 4096$ $14 \times 14 \times 512$ VGG-11_BN $28 \times 28 \times 512$ MobileNet-v2 $7 \times 7 \times 512$ 56 × 56 × 256 VGG-19 ResNet-18 70 VGG-16 MobileNet-v1 112×112×128 VGG-13 convolution+ReLU ShuffleNet VGG-11 max pooling GoogLeNet fully connected+ReLU 65 $224 \times 224 \times 64$ 1M 5M 10M 50M 75M 100M 150M SqueezeNet-v1.1 SqueezeNet-v1.0 AlexNet

55

0

5

https://arxiv.org/pdf/1810.00736.pdf

Potential for collaboration on deep-histopathology of brain tumors, LIH 5

Operations [G-FLOPs]

15

20

25

10

DeepHisto: Initial Settings

6

Task

Get HE-stained slides, separate them into tiles and classify the tiles into 5 categories:

- glioblastoma (IDHwt)
- astrocytoma (IDHmut, non-codel)
- oligodendroglioma (IDHmut, codel)
- necrosis
- normal tissue (grey and white matters)

Cohort

58 slides, with labelled areas of

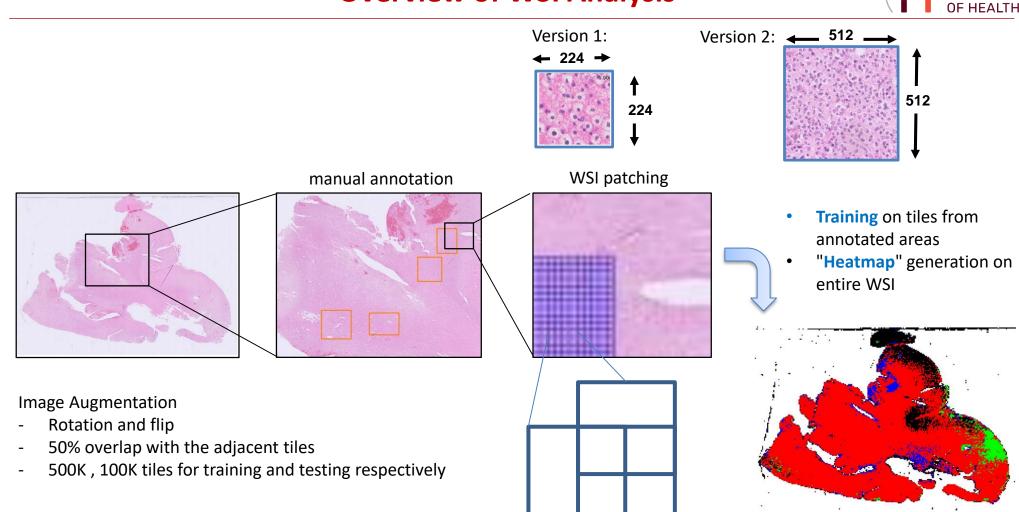
"representative" pattern

- GBM: 20 WSIs (slides)
- Astro: 16 WSIs
- Oligo: 22 WSIs

In each group 2 WSI were preserved for testing

Manually annotated WSI

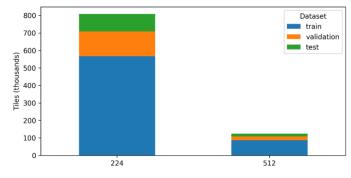
Overview of WSI Analysis



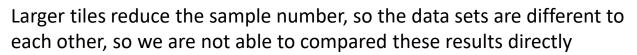
LUXEMBOURG

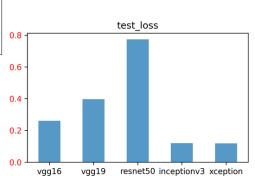
INSTITUTE

Training



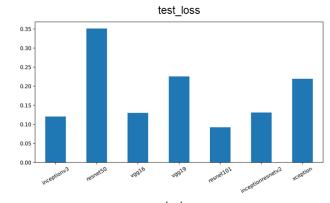
For both versions (224x224 and 512x512) VGG16 performed very well!

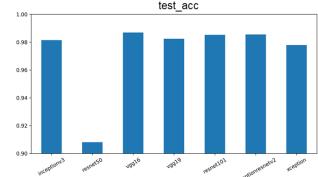




224x224

test_acc 1.00 0.99 0.98 0.97 0.96 0.95 vgg16 vgg19 resnet50 inceptionv3 xception 512x512





Potential for collaboration on deep-histopathology of brain tumors, LIH 8

We started with the "classical" pre-trained **VGG16**. Results were not bad compared to more advanced models, with top accuracy for 2 versions 0.984 <-> 0.986

	N=100K 2			224x224				
	_		P					
	0.984	GBM	Astro	Oligo	Necro	Normal		
Labels	GBM	6733	2	48	57	0		
	Astro	0	17160	0	0	0		
	Oligo	94	140	47847	2	293		
	Necro	17	0	1	4782	0		
	Normal	2	25	963	1	22265		

	_	Predictions					
Balanced:	0.985	GBM	Astro	Oligo	Necro	Normal	
	GBM	0.984	0.000	0.007	0.008	0.000	
s	Astro	0.000	1.000	0.000	0.000	0.000	
Labels	Oligo	0.002	0.003	0.989	0.000	0.006	
ГС	Necro	0.004	0.000	0.000	0.996	0.000	
	Normal	0.000	0.001	0.041	0.000	0.957	

	_	Predictions						
	0.986	GBM	Astro	Oligo	Necro	Normal		
Labels	GBM	1028	2	0	2	0		
	Astro	0	2752	0	0	0		
	Oligo	30	0	7658	2	54		
	Necro	0	0	0	624	0		
	Normal	0	0	121	1	3255		

512x512

N=15K

	Predictions					
Balanced:	0.990	GBM	Astro	Oligo	Necro	Normal
	GBM	0.996	0.002	0.000	0.002	0.000
s	Astro	0.000	1.000	0.000	0.000	0.000
Labels	Oligo	0.004	0.000	0.989	0.000	0.007
ΓC	Necro	0.000	0.000	0.000	1.000	0.000
	Normal	0.000	0.000	0.036	0.000	0.964

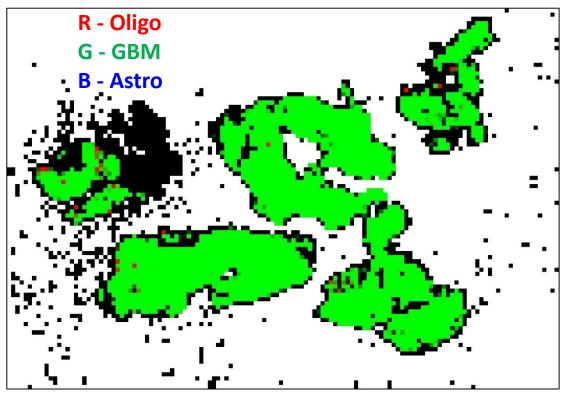
Heatmap: GBM case

G - necro

B - normal

This example: a training-set slide from an **glioblastoma** patient

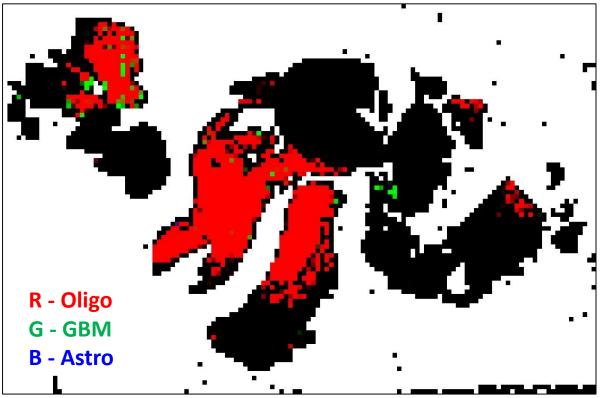
Tumor classes highlighted

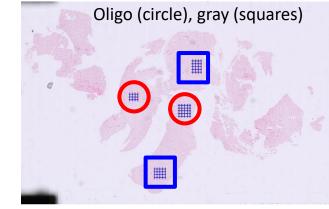


Heatmap: test Oligo case

This example: a test-set slide from an oligodendroglioma patient (never seen by the network)

Tumor classes highlighted

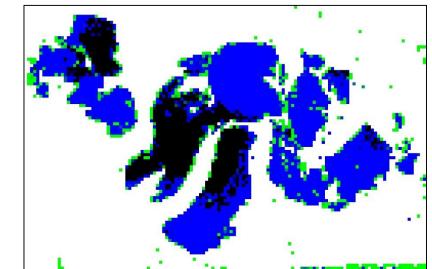




LUXEMBOURG

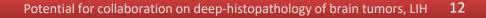
INSTITUTE OF HEALTH

Non-tumor

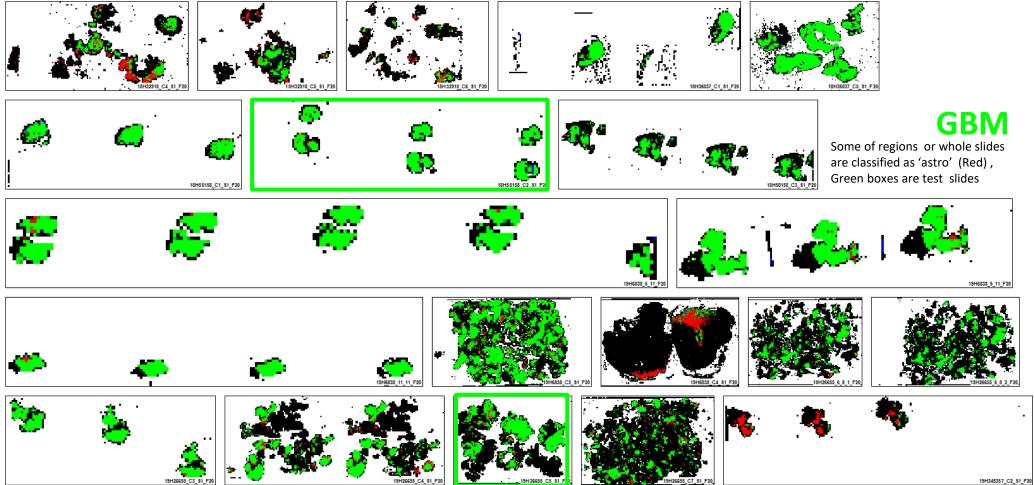


Astro | GBM | Oligo

Some of regions or whole slides are classified as 'astro' (Red), Green boxes are test slides

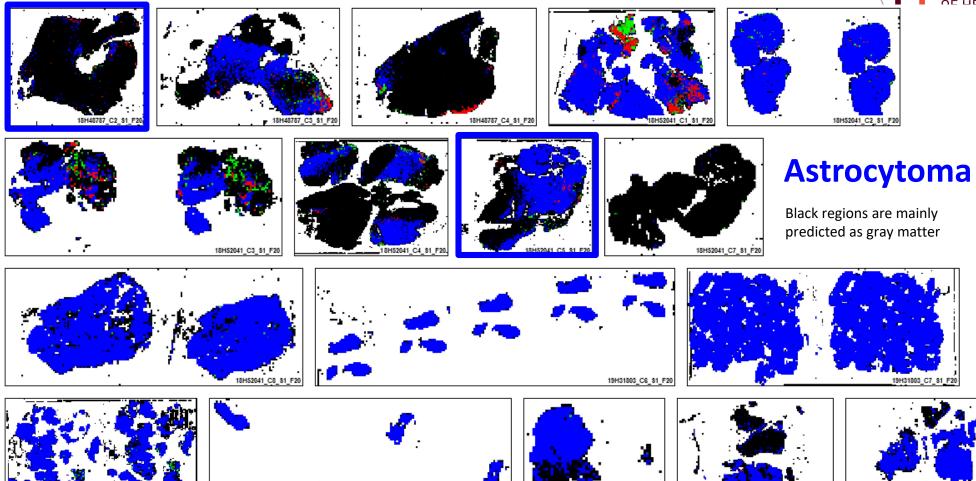


Astro | GBM | Oligo



Astro | GBM | Oligo

20H22235_C9_\$1



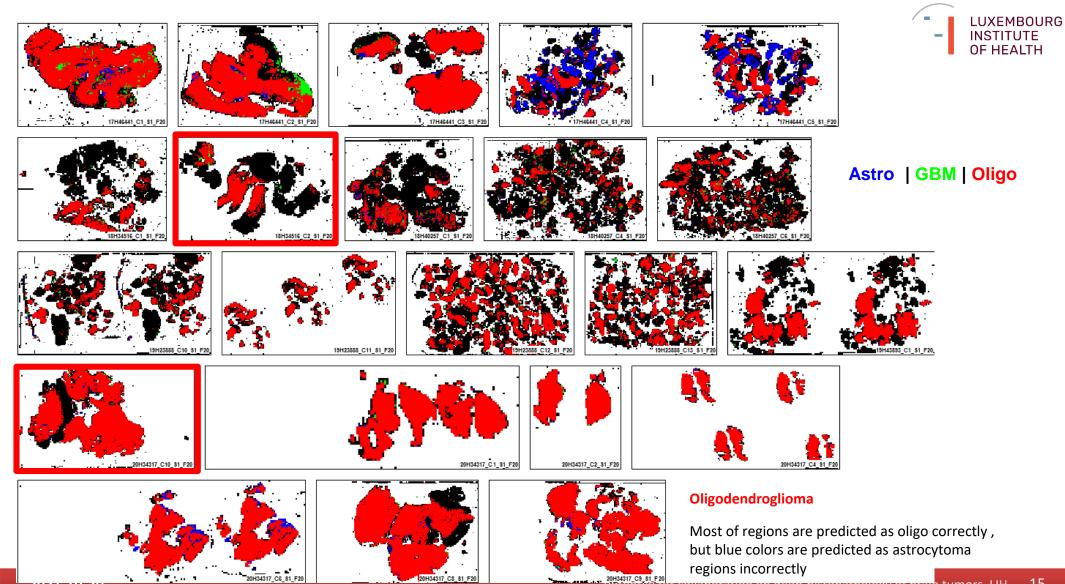
20H22235_C4_\$1

20H22235_C5_\$1

20H22235_C8_\$1

2021-10-20

19H31803_C8_\$1_F20

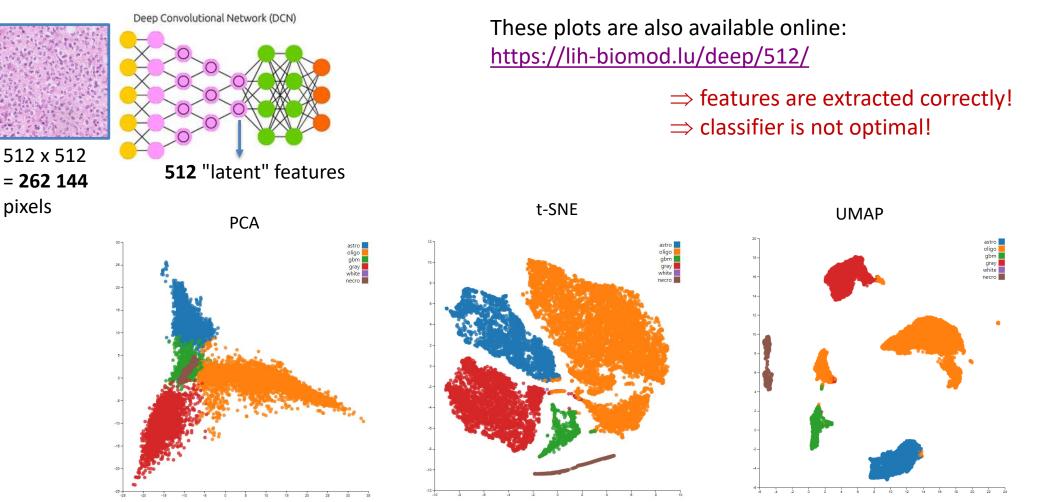


2021-10-20

WHANT CS ST F20 POTENTIAL TO COMADORATION ON GEEP-NISTOPATHOLOgy OF BRAIN tumors, LIH

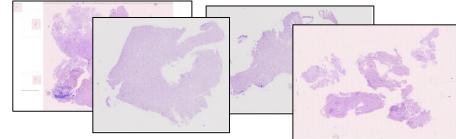
15

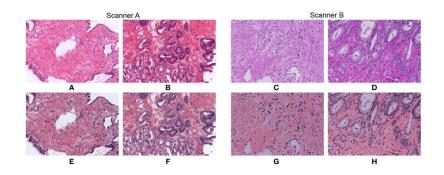
DLN for Feature Extraction

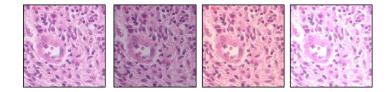


Further Improvements: Classical

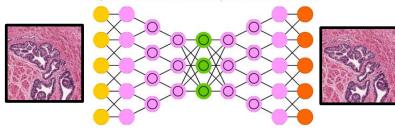
- ➢ get more (annotated) slides
- ➤ add tile / WSI color normalization
- ➤ add color-based data augmentation
- replace VGG16 by an autoencoder and improve classification based on the latent features







Deep Convolutional Inverse Graphics Network (DCIGN)

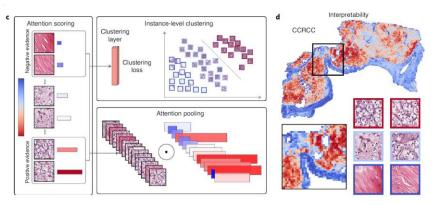


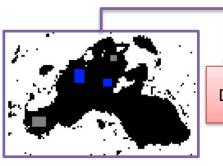
works on unlabeled data!

Further Improvements: Modern

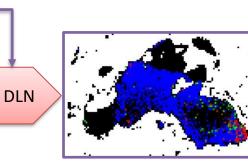
- > weakly supervised (multiple instance learning)
- attention-based training
- use 2-cascade training

train on labelled data

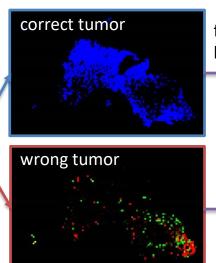




Original labelled image. Each pixel – a tile

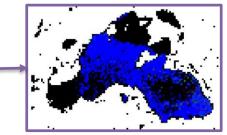


heatmap 1



fine-tune on DLNlabelled data

DLN



refined heatmap 2

Can we get more slides?

Shall we try different scanners and thickness?

Discussion

Is it interesting?

What was developed in your groups?

Anything we can contribute?

Can we incorporate more brain tumors?