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Endothelial
cells

| Normal cells

Invasive ‘

cancer cells

\. Cell 2011,144,646-74

» Native heterogeneity of tissues
» Inter/intra tumor heterogeneity

Issues in histopathological image analysis:

» Tedious analysis

» In some cancers (e.g. prostate) < 1% of
the image is cancer-related

» Standard approaches require supervised
"pixel-wise" labelling - unrealistic
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Artificial Neural Networks -

I LUXEMBOURG

Deep Feed Forward (DFF .
: L Multilayer perceptron, a.k.a. =~

N My first "love"... ©
(Deep) feed-forward network, .

= back-propagation network BRI S R Nazarov et al (2004)
o fully-connected layers, i R IR T i J Chem Inf Comput Sci
etc...
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mnatuxede icine ARTICLES Task: classification positive/negative
https://doi.org/10.1038/s41591-019-0508-1 . . .. .
» Prostatic carcinoma classification
» Skin basal cell carcinoma
» Brest cancer metastasis in axillary
lymph nodes

Clinical-grade computational pathology using
weakly supervised deep learning on whole
slide images

:

probability

Specificall w f PREROROOREE
Gabriele Campanella®?, Matthew G. Hanna', Luke Geneslaw’, Allen Miraflor’, P y .
addresses: I .

Vitor Werneck Krauss Silva', Klaus J. Busam', Edi Brogi', Victor E. Reuter’, David S. Klimstra' I ~ IV
and Thomas J. Fuchs®"2* P rrrs s

f Pt
Dataset Years Slides Patients Positive slides External slides ImageNet
Prostate in house 2016 12,132 836 2,402 0 19.8x
Prostate external 2015-2017 12,727 6,323 12,413 12,727 29.0x
Skin 2016-2017 9,962 5,325 1,659 3,710 21.4x
Axillary lymph nodes 2013-2018 9,894 2,703 2,521 1,224 18.2x
Total 44,732 15,187 88.4x
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Methods 1: Multiple Instance Learning (MIL) I—|
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MIL: multiple instance learning The main idea:

Positive Bags

Originates from this paper and was
related to drug activity predictions

@ Positive Example

= Negative Example

Artificial
.. Intelligence
ELSEVIER Artificial Intelligence 89 (1997) 31-71 _—

. . . +1 Positive Bag
Solving the multiple instance problem

with axis-parallel rectangles

(g
Thomas G. Dietterich®*, Richard H. Lathrop®, Tomds Lozano-Pérez ¢ -1 Negative Bag
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Several algorithms are presented — need to dig into it ©

DOI: 10.1371/journal.pcbi. 1005465
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Methods 1: Training
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1) Tiling: Otsu's method

to discard b/g tiles.
3 magnitudes were
investigated

2) Use CNN with min
balanced error.
Tested:
ResNet34,18,101,
AlexNet,VGG11BN,
DenseNet201

CNN is (1) trained, (2)
used to refine classes of
tiles (a.f.a.il.u©)

3) Use RNN for aggregate
CNN feature (512)
representation into a
single class
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Methods 1: Simpler View on Training ol R

CNN: ResNet34

poal /2
3x3 coow, 512, 2 -.-"'..

34-layer residual

Same CNN —
CNN trainin feature
8 extraction features

CRS 3 CNN OO

////Q/ Learning / G

Class

Bioinformatics @ LIH 7

2021-02-12



L | s
Results 1: Accuracy L | b
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Fig. 3 | Weakly supervised models achieve high performance across all tissue types. The performances of the models trained at 20x magnification on
the respective test datasets were measured in terms of AUC for each tumor type. a, For prostate cancer (n=1,784) the MIL-RNN model significantly
(P<0.001) outperformed the model trained with MIL alone, resulting in an AUC of 0.991. b,¢, The BCC model (n=1,575) performed at 0.988 (b), while
breast metastases detection (n=1,473) achieved an AUC of 0.966 (c). For these latter datasets, adding an RNN did not significantly improve performance.
Statistical significance was assessed using DeLong's test for two correlated ROC curves.

» MIL results can be used directly (not robust) or aggregated by logistic regression or RF. But RNN outperformed...
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Results 1: Visualization of the feature space -
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Scanner & group effect , Compare to other datasets: dataset size effect ©
a Multiple instance learning Fully supervised learning
(trained on MSK dataset) (trained on CAMELYON16 dataset)
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scanned on Aperio scanned on Philips scanned on Aperio (n=1,473) (n=129) (n=129) (n=1,473) .
(n=1,784) (n=1,274) (n=12,727) supervised dataset: breast

Fig. 5 | Weak supervision on large datasets leads to higher generalization performance than fully supervised learning on small curated datasets. The cancer metastases in whole-

generalization performance of the proposed prostate and breast models were evaluated on different external test sets. a, Results of the prostate model slide images of histological
trained with MIL on MSK in-house slides and tested on: (1) the in-house test set (n=1,784) digitized on Leica Aperio ATZ scanners; (2) the in-house test Iymph node sections.

set digitized on a Philips Ultra Fast Scanner (n=1,274); and (3) external slides submitted to MSK for consultation (n=12,727). Performance in terms of

AUC decreased by 3 and 6% for the Philips scanner and external slides, respectively. b, Comparison of the proposed MIL approach with state-of-the-art

fully supervised learning for breast metastasis detection in lymph nodes. Left, the model was trained on MSK data with our proposed method (MIL-RNN)

and tested on the MSK breast data test set (n=1,473) and on the test set of the CAMELYON16 challenge (n=129), showing a decrease in AUC of 7%.

Right, a fully supervised model was trained following ref. ' on CAMELYON16 training data. While the resulting model would have won the CAMELYON16

challenge (n=129), its performance drops by over 20% when tested on a larger test set representing real-world clinical cases (n=1,473). Error bars

represent 95% confidence intervals for the true AUC calculated by bootstrapping each test set.
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:O%\ Task: multivariate regression
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» Various cancers - input
» Gene expression - output
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A deep learning model to predict RNA-Seq
expression of tumours from whole slide images
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TCGA data:
8725 samples, 28 cancers,

30839 genes (med>0), normalized log FPKM-UQ
5-fold cross-validation
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Methods 2: Graphical Abstract -

— HE2RNA

(1) Transctiptome prediction
from images

Y

Transcriptomic
representation

(2) Virtual spatialization of
transcriptomic data (fro each
Results improvements gene over sllde)

for MSI status

Transfer leaming

Whole-slide images

(3) Improving predictions by
transfer leatning: e.g.
microsatellite instability (MSI)
from WSI

Transcriptome prediction 1 6 Virtual spatialization
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1
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i | i 2
Tiling: Otsu's method / per (super) tile!

HE2RNA

1) Tiling: Otsu's method to discard b/g tiles.

2) Use a pre-trained CNN: ResNet50 to extract features
3) Cluster (k-means) to 100 super-tiles

4)  Use a multi-layer perceptron (MLP) per (super-)slide

Aggregation: sampling k slides and averaging
several the top predicted expression!
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Results 2: Predicting Expression L | b
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A gene is predicted "correctly" if its correlation over samples r > 0 with adj.p-value < 0.05

: #*
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How good is this measure?..
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Results 2: Spatialization L | b
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Fig. 4 Virtual spatialization of CD3 and CD20 expression, confirmed by immunohistochemistry. a Top left inset: H&E-stained slides were obtained from
a LIHC patient. Main top image: The corresponding heatmap of the CD3-encoding genes expression predicted by our model. Main bottom image: CD3
immunohistochemistry (IHC) results obtained by washing out H&E stain and staining the same slide for IHC. b Pearson's coefficient (R = 0.51, p-value <
104, two-tailed Student's t test) for the correlation between the CD3 expression predicted by our model and the percentage of CD3* cells actually
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Pre-trained models (e.g. Xceptrion)

Classifier Class

CNN WSL-approach

Components weights

Approxi-

] :> CNN Clustering mator

Looking at Convolutional autoencoders
several

scales?

WSL-approach Components weights

o |
Clustering >
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