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Background: DNA Methylation

CpG is shorthand for 5'—C—phosphate—G—3'

 Responsible for tissue differentiation and is specific to tissue!
 Can be changed by external factors and life style
 Typically repress transcription (if in promoter)
 Is strongly involved in carcinogenesis
 DNAm signature is much more stable than RNA –

works even for paraffin-embedded samples

Main features

Methods
 Standard: "bisulfite" (HSO3

–) treatment: 
unmethylated CpGUpG

 Illumina arrays: 450k and EPIC (850k)
 Sequencing: RRBS, WGBS

Gillespie, S. L., Hardy, L. R., & Anderson, 
C. M. (2019). Nursing Outlook. 
doi:10.1016/j.outlook.2019.05.006
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Background: Heterogeneity

Heterogeneity in methylation data

 Gender, ethnicity, age, lifestyle
 Natural tissue heterogeneity
 Inter/intra tumor heterogeneity due to clonal evolution

Observed methylation

Confounding factors 
and life style

Natrajan R., et al 
PLoS Medicine, 2016

https://www.pancanology.com/clonal-evolution-model/

Sample 
composition

Clonal evolution 
in cancer

It is important to disentangle these effects!   Ideally in a reference-free manner
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Mixing and Non-negative Matrix Factorization (NMF)
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Advantages and Issues of NMF

PCA NMF

NMF: issue 2

Issues of NMF:
• Multiple solutions
• Is the minimal description stable?
 we need:

 additional restrictions
 regularizations during fitting

NMF: issue 1
ICA

Advantages of NMF:
• Fits physical principles
• Easy to interpret

Sompairac el al, Int J Mol Sci, 2019 (link)
Cantini el al, Bioinformatics, 2019 (link)

?

deterministic stochastic stochastic

https://www.mdpi.com/1422-0067/20/18/4414/htm
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821374/
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MeDeCom: Core Algorithm

D = T×A + e

MeDeCom’s regularization:

Standard NMF:

Hypothesis: in a pure cell population, 
methylation should be either 0 or 1 

Other reference-free tools:

RefFreeCellMix – Houseman, BMC Bioinformatics, 2016 (link)
EDec – Onuchic, Cell Rep., 2016 (link)

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1140-4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5115176/
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MeDeCom: Issues

Assumptions & Requirements

(1) Cell population consists of finite (and small) number of sub-populations.
(2) Each cell subpopulation have homogenous methylome profile => CpG is either 0 or 1.
(3) Population mixtures are variable b/w samples.
(4) Low level of technical noise and high level of biological variability.
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Issues

(1) Extremely time / memory 
consuming, runs on HPC (easily can 
reach 104 runs to cover 
hyperparameter space)

(2) Sensitive to technical noise and 
confounding factors (gender, age,..)
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Consensus Independent Component Analysis (consICA)
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consICA: Nazarov et al,
BMC Medical Genomics, 2019 (link)
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https://bmcmedgenomics.biomedcentral.com/articles/10.1186/s12920-019-0578-4
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Deconvolution Data Challenge, 2018

Mixed 
methy-
lation
data

ICA
- estimate k
- normalization
- feature selection

Corrected 
methyla-
tion data

NMF
- precise fitting

Captures gender - one of the confounders

IC that “correlates” with 
gender shows p-value 
of…

X = T x A

Ti Ai

Can reduce number of features
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Pipeline Overview

(1) Any methylation technology.
DecompPipeline: data import,
preprocessing, accounting for
confounders and feature selection
by ICA.

(2) MeDeCom (RefFreeCellMix or
Edec) performs deconvolution of
data into the latent methylation
components (LMCs) and the
proportions matrix. λ and K should
be identified.

(3) The results are interpreted
using the R/Shiny visualization tool
FactorViz

ICA



http://edu.modas.lu2020-11-13 11

ICA Results: Preprocessing

ICA

Evaluation of ICA on 
TCGA LUAD dataset.
(a,b) ICA deconvolution: 
components linked to 
confounding factors are 
detected and removed.

(c) Distributions of the 
transformed (D*) and 
original (D) methylation 
matrices. 

(d) Associations 
between LMC 
proportions and 
qualitative phenotypic 
traits. (□ - significant)
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ICA Results: Integration with RNAseq
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signals

TCGA: LUAD

Observations:
 LMC5  IC35
 LMC3  IC21
 LMC1  IC9
 LMC4  IC2, IC3

Direct functional annotation of methylation is 
challenging – we end to map CpGs onto promoter 
regions. In paper: LOLA (region-based) and GO on 
hypomethylated sites – IMHO can be improved

Recommendations?



http://edu.modas.lu2020-11-13 13

Interpretation

LMC5  IC35

LMC5 was correlated with marker 
gene CLDN5 (Endothelial), pv = 1e-42

Functional annotation of IC35 is: 

LMC3  IC21

LMC3 was correlated with marker 
gene PTPRC (Immune), pv = 1e-32

Functional annotation of IC21 is: 

LMC1  IC9

LMC3 was correlated with marker 
gene EPCAM (Epithelial), pv = 1e-19

Functional annotation of IC9 is:  (???)
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Pipeline Output: LUAD, Illumina

LOLA

GO

Marker genes
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Pipeline Output: Ewing sarcoma, RRBS data

LOLA

GO

RRBS Reduced-representation 
bisulfite sequencing. A next-
generation sequencing strategy 
yielding CpG methylation calls in 
CpG-dense regions of the 
genome.
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How about ICA alone ?
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How about ICA alone ?
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best predictor
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the best predictor

Combined features give good predictions for 
breast and uterine carcinomas

kidney renal clear 
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Prognosis
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Conclusions

Presented pipeline: DecompPipeline + MeDeCom + FactorViz:
(1) provides a complete pipeline of combining top available tools
(2) is applicable for bisulphate sequencing data
(3) (early) MeDeCom was tested on synthetic and experimental data
(4) When in the pipeline, similar results with RefFreeCellMix

Limitations of the approach:
- low number of components (usually <10)
- may be tricky to interpret without RNA-seq data
- missing some important subpopulations: proliferating tumor cells 

(though, cell division may be not affecting methylation?..) 

Our consICA approach can be applicable to methylation data as well. 
Despite it does not estimate concentrations as precise as MeDeCom, but 
it can extract a lot more meaningful biological signals!


