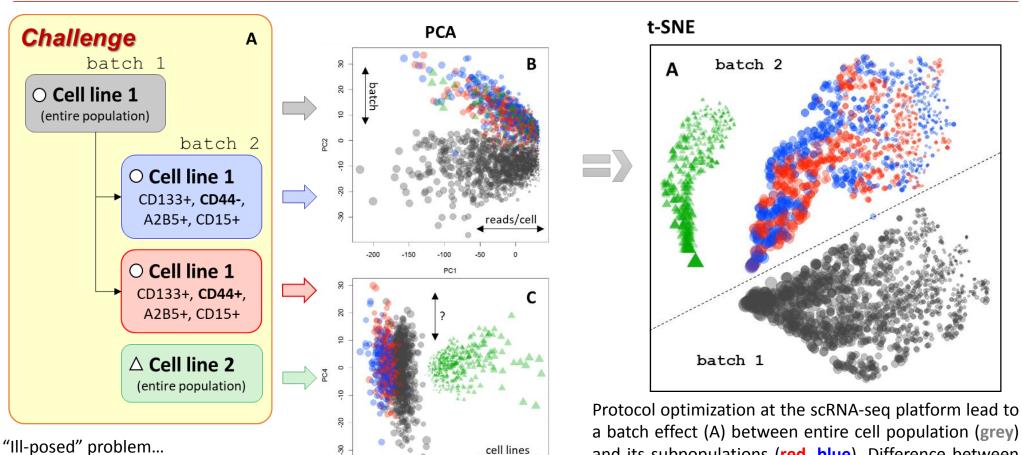


Independent component analysis of single cell RNA-seq data:

from batch effect correction to biological processes

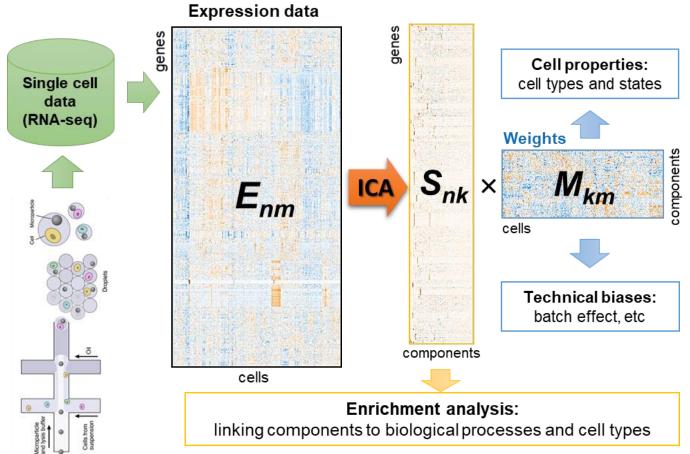
Petr V Nazarov petr.nazarov@lih.lu


Poster 51

Institut Curie, Paris

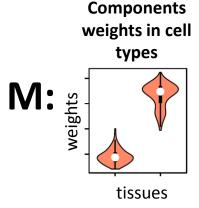
2019-09-27 CSBC-2019 1

Problem


a batch effect (A) between entire cell population (grey) and its subpopulations (red, blue). Difference between batches is larger than difference between two cell lines (B,C). Adapted from [1].

PC3

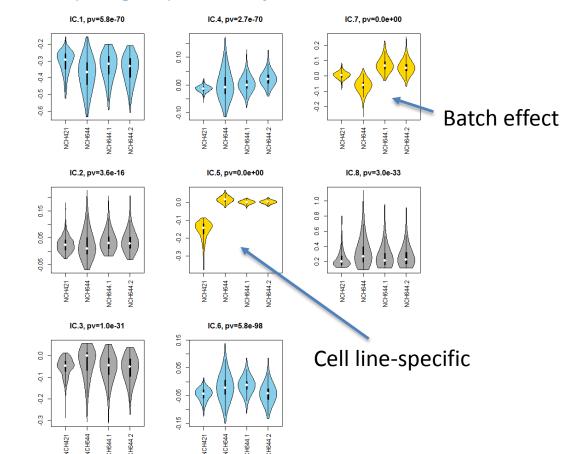
CSBC-2019


Method: Consensus ICA

One component

S: genes

ICA review: Sompairac et al., (2019) Int. J. Mol. Sci, 20(18): 4414


Tool and application: Nazarov et al., (2019) BMC Medical Genomics, 12:132

2019-09-27 CSBC-2019

Components Characterization

ICA with 8 components: M (weights) over experiments

Weights

2019-09-27 CSBC-2019

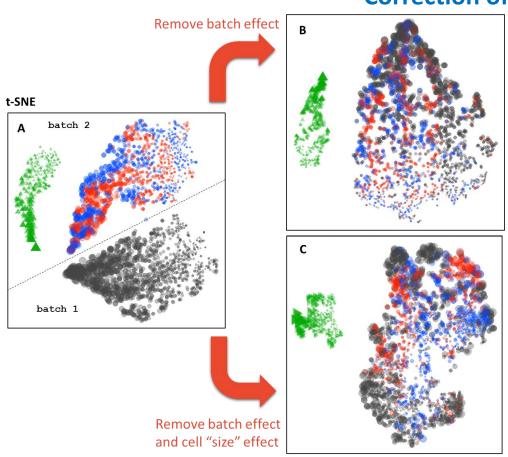
Components Characterization

Analysis of contributing genes (S): biological processes

- SRP-dependent cotranslational protein ta...
 cotranslational protein targeting to mem...
 protein targeting to ER a lot of MTs
- cell cycle & DNA replication CDK1, TOP2A, CDK2, CCNA2
- mitotic cell cycle, CCNA2, CDK1, TOP2A, CDK2
- generation of precursor metabolites and ...

 ATP metabolic process

 SRP-dependent cotranslational protein ta...


- 5 Cell lines, PDGFRA
- RNA processing ribonucleoprotein complex biogenesis ribosome biogenesis
- organonitrogen compound metabolic proces...
 mitochondrial translational elongation
 ribonucleoprotein complex biogenesis
- 8 Technical library size

2019-09-27 CSBC-2019

ICA-based batch correction

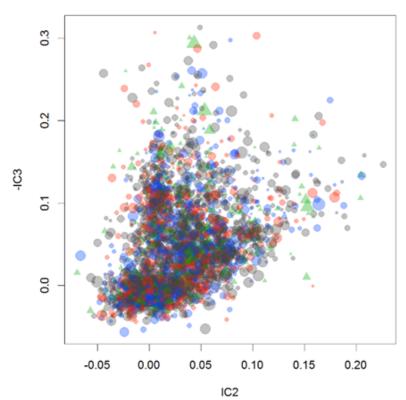
Correction of batch effect

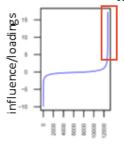
$$E_{nm} \Rightarrow S_{nk} \times M_{km}$$

 $M'_{7,m} \leftarrow 0$
 $E'_{nm} \leftarrow S_{nk} \times M'_{km}$

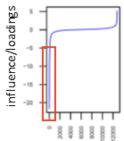
t-SNE representations of original data (A) and ICA-recovered data, after excluding batch effect (B) or several (C) components linked to technical factors.

Dirkse et al. (2019) Nature Communications, 10:1787


Biological Signals: Cell Cycle


Gene expression: CCNA2

ICA (M-matrix)

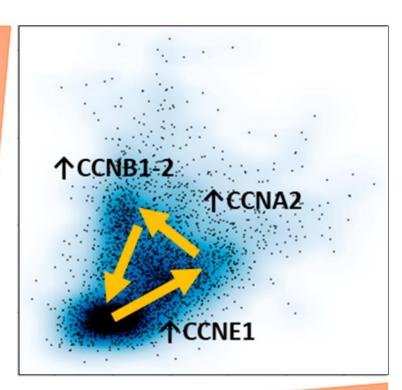


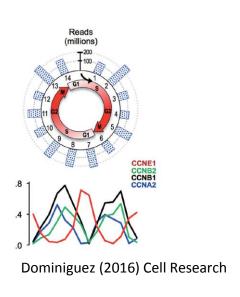
GO of IC2 (positive side)

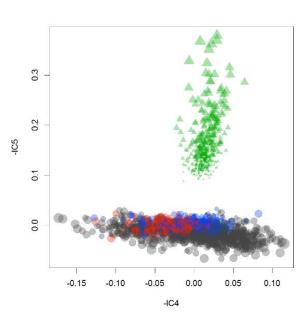
GO	FDR
cell cycle process	1.45e-28
DNA replication	1.45e-28
chromosome organization	1.45e-28
DNA metabolic process	1.45e-28
DNA-dependent DNA replication	1.45e-28
DNA conformation change	1.45e-28
DNA repair	2.35e-27
DNA recombination	7.95e-27
chromosome segregation	1.10e-19
DNA packaging	1.76e-19

GO of IC3 (negative side)

GO	FDR
mitotic cell cycle process	7.68e-29
mitotic cell cycle	7.68e-29
cell cycle process	7.68e-29
cell cycle	7.68e-29
sister chromatid segregation	7.68e-29
microtubule-based process	7.68e-29
sister chromatid cohesion	7.68e-29
regulation of cell cycle process	8.71e-28
single-organism organelle organization	8.25e-26
microtubule cytoskeleton organization	3.00e-25


2019-09-27 CSBC-2019 7


Cell Cycle



Same cell cycle in depth

C: DNA replication

IC: mitotic cell cycle

Conclusions

□Consensus ICA can be used to **correct technical biases**.

☐ ICA provides information about **biological processes** in scRNA-seq.

☐ Weights of the components can be used to **predict cell classes**.

2019-09-27

Acknowledgements

Quantitative Biology Unit, Luxembourg Institute of Health (LIH)

Arnaud MULLER
Dr. Francisco AZUAJE

Supported by Luxembourg National Research Fund C17/BM/11664971/**DEMICS**

NORLUX Neuro-Oncology, LIH

Dr. Anna GOLEBIEWSKA Prof. Simone NICLOU

Institut Curie, France
Dr. Andrei ZINOVYEV

2019-09-27 CSBC-2019