

LUXEMBOURG INSTITUTE OF **HEALTH**

RESEARCH DEDICATED TO LIFE Multiomics Data Science

Testing Hypotheses about Means

from BSc course Biostatistics (UL)

dr. Petr Nazarov

petr.nazarov@lih.lu

2020

Null and Alternative Hypotheses

When statisticians would like to make a claim, they do this in a form o hypothesis testing.

In hypothesis testing we begin by making a tentative assumption about a population parameter, i.e. by formulation of **a null hypothesis**.

Null hypothesis The hypothesis tentatively assumed true in the hypothesis testing procedure, H_0 For safety reasons, we assume a situation when nothings "interesting" happens as H_0

Alternative hypothesis

 $H_0: \mu \leq \text{const}$

 $H_a: \mu > const$

The hypothesis concluded to be true if the null hypothesis is rejected, H_a H_a will be a situation when we see something unusual, which require action

 $H_0: \mu \ge \text{const}$

*H*_a: μ < const

Hypotheses in a simplest case: comparing mean to a constant

One-tailed

Two-tailed

One-tailed Test

One-tailed test

A hypothesis test in which rejection of the null hypothesis occurs for values of the test statistic in one tail of its sampling distribution

 $H_0: \mu \le \mu_0$ $H_0: \mu \ge \mu_0$
 $H_a: \mu > \mu_0$ $H_a: \mu < \mu_0$

A Trade Commission (TC) periodically conducts statistical studies designed to test the claims that manufacturers make about their products. For example, the label on a large can of Hilltop Coffee states that the can contains **3 pounds** of coffee. The TC knows that Hilltop's production process cannot place exactly 3 pounds of coffee in each can, even if the mean filling weight for the population of all cans filled is 3 pounds per can. However, as long as the population mean filling weight is at least 3 pounds per can, the rights of consumers will be protected. Thus, the TC interprets the label information on a large can of coffee as a claim by Hilltop that the population mean filling weight is at least 3 pounds per can. We will show how the TC can check Hilltop's claim by conducting a lower tail hypothesis test.

μ_0 = 3 lbm Suppose sample of n=36 coffee cans is selected. From the previous studies it's known that σ = 0.18 lbm

One-tailed Test: Example

 $\mu_0 = 3$ lbm

Suppose sample of n = 36 coffee cans is selected and m = 2.92 is observed. From the previous studies it's known that $\sigma = 0.18$ lbm

 $H_0: \mu \ge 3$ no action $H_a: \mu < 3$ legal action

Let's say: in the extreme case, when μ =3, we would like to be 99% sure that we make no mistake, when starting legal actions against Hilltop Coffee. It means that selected significance level is $\alpha = 0.01$

P-value

Let's Try to Understand...

Let's find the probability of observation *m* for all possible $\mu \ge 3$. We start from an extreme case (μ =3) and then probe all possible $\mu > 3$. See the behavior of the small probability area around measured *m*. What you will get if you summarize its area for all possible $\mu \ge 3$?

P(m) for all possible $\mu \ge \mu_0$ is equal to **P**(*x*<*m*) for an extreme case of $\mu = \mu_0$

P-value

Let's Try to Understand...

Red area characterizes the probability to observe, what we observed, if null hypothesis is true.

To be completely correct, the red area gives us a probability of making an error when rejecting the null hypothesis, or the <u>p-value</u>.

Two-tailed Test

Two-tailed test

A hypothesis test in which rejection of the null hypothesis occurs for values of the test statistic in either tail of its sampling distribution.

One Tail Test vs. Two Tail Test

There is a raging controversy (for about the last hundred years) on whether or not it is ever appropriate to use a one-tailed test. The rationale is that if you already know the direction of the difference, why bother doing any statistical tests. While it is generally safest to use a twotailed tests, there are situations where a one-tailed test seems more appropriate. The bottom line is that it is the choice of the researcher whether to use one-tailed or two-tailed research questions.

Two Populations

Independent Samples

Independent samples

Samples selected from two populations in such a way that the elements making up one sample are chosen independently of the elements making up the other sample.

Two Populations

Dependent Samples

Matched samples

Samples in which each data value of one sample is matched with a corresponding data value of the other sample.

