

Correction for Multiple Testing. ANOVA

from BSc course Biostatistics (UL)

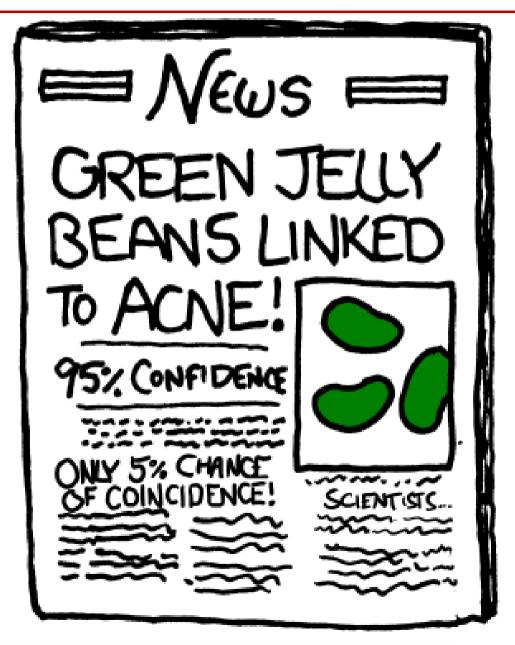
dr. Petr Nazarov

petr.nazarov@lih.lu

2020

UNIVERSITÉ DU LUXEMBOURG

Example

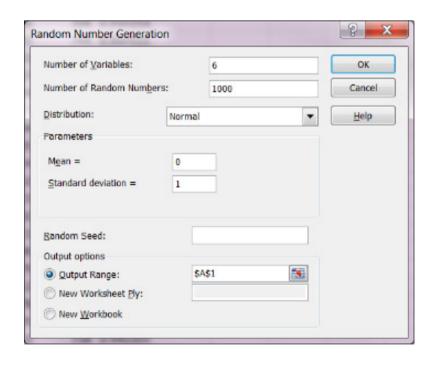


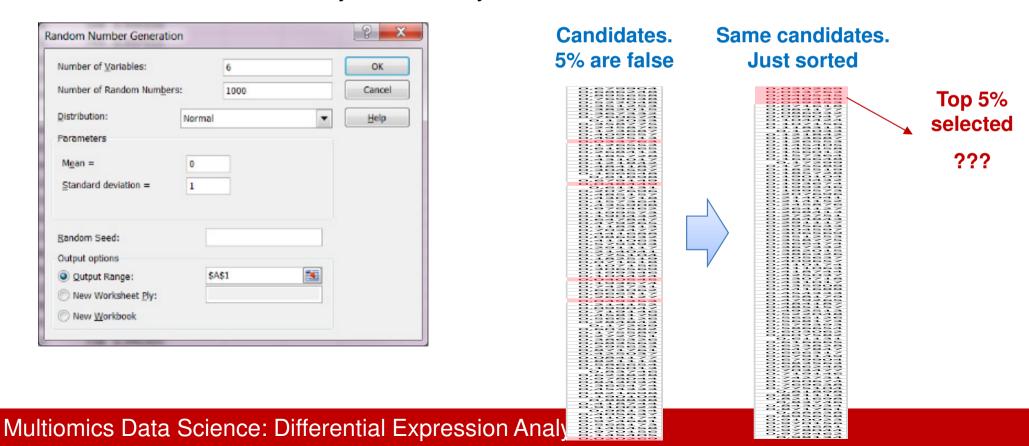
http://www.xkcd.com/882/

Why is it so important...

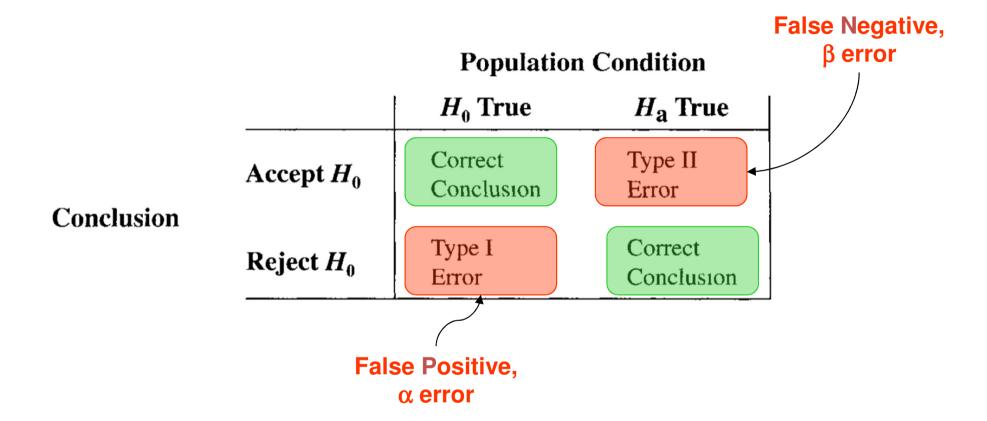
Let's generate a completely random experiment (Excel or R)

- ◆ Generate 6 columns of normal random variables (1000 candidate "genes" in each).
- Consider the first 3 columns as "treatment", and the next 3 columns as "control".
- Using t-test calculate p-values b/w "treatment" and "control" group. How many candidates have p-value<0.05?
- Calculate FDR. How many candidates you have now?





Hypotheses



Probability of an error in a multiple test:

1—(0.95) number of comparisons

UNIVERSITÉ DU LUXEMBOURG

False Discovery Rate

False discovery rate (FDR)

FDR control is a statistical method used in multiple hypothesis testing to correct for multiple comparisons. In a list of rejected hypotheses, FDR controls the expected proportion of incorrectly rejected null hypotheses (type I errors).

Population Condition

Conclusion

	H_0 is TRUE	H ₀ is FALSE	Total
Accept H ₀ (non-significant)	$oldsymbol{U}$	T	m-R
Reject H ₀ (significant)	$oldsymbol{V}$	\boldsymbol{S}	R
Total	m_0	$m-m_0$	m

$$FDR = E\left(\frac{V}{V+S}\right)$$

UNIVERSITÉ DU LUXEMBOURG

FDR and FWER

Assume we need to perform m = 100 comparisons, and select maximum **FDR** = $\alpha = 0.05$

$$FDR = E\left(\frac{V}{V+S}\right)$$

Expected value for FDR $< \alpha$ if

$$P_{(k)} < \frac{k}{m}\alpha$$

$$\frac{mP_{(k)}}{k} < \alpha$$

p.adjust(pv, method="fdr")

Theoretically, the sign should be "≤". But for practical reasons it is replaced by "<"

Familywise Error Rate (FWER)

Bonferroni – simple, but too stringent, not recommended

$$mP_{(k)} < \alpha$$

Holm-Bonferroni – a more powerful, less stringent but still universal FWER

$$(m+1-k)P_{(k)} < \alpha$$

p.adjust(pv)

UNIVERSITÉ DU LUXEMBOURG

Linear Models

Many conditions

We have measurements for 5 conditions. Are the means for these conditions equal?

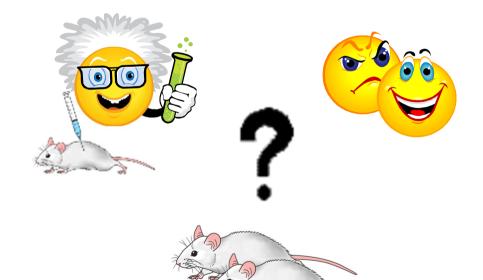
If we would use pairwise comparisons, what will be the probability of getting error?

Number of comparisons: $C_2^5 = \frac{5!}{2!3!} = 10$

Probability of an error: $1-(0.95)^{10} = 0.4$

Many factors

We assume that we have several factors affecting our data. Which factors are most significant? Which can be neglected?



ANOVA example from Partek™

http://easylink.playstream.com/affymetrix/ambsymposium/partek_08.wvx

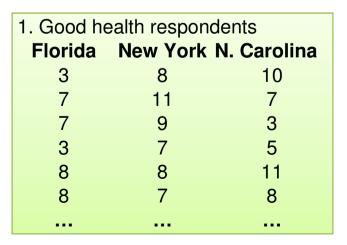
UNIVERSITÉ DU LUXEMBOURG

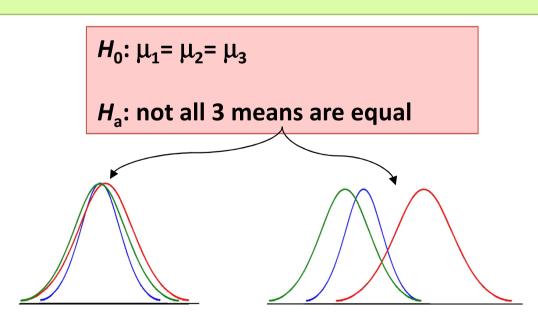
Linear Models

As part of a long-term study of individuals 65 years of age or older, sociologists and physicians at the Wentworth Medical Center in upstate New York investigated the relationship between geographic location and depression. A sample of 60 individuals, all in reasonably good health, was selected; 20 individuals were residents of Florida, 20 were residents of New York, and 20 were residents of North Carolina. Each of the individuals sampled was given a standardized test to measure depression. The data collected follow; higher test scores indicate higher levels of depression.

Q: Is the depression level same in all 3 locations?

depression.txt

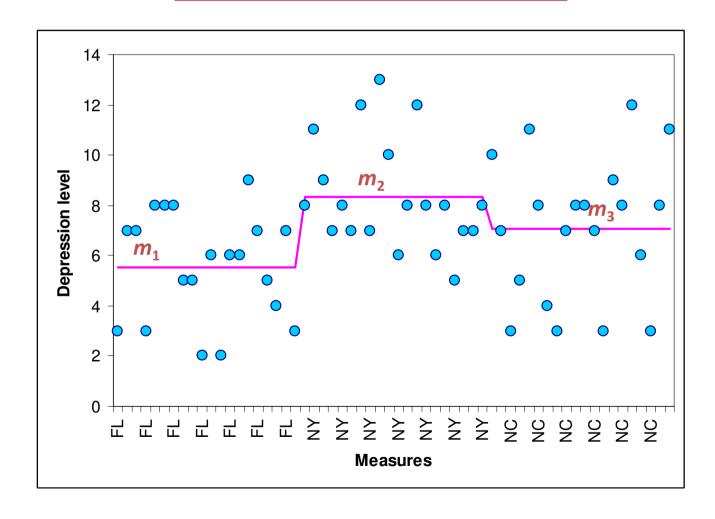




Linear Models

$$H_0$$
: μ_1 = μ_2 = μ_3

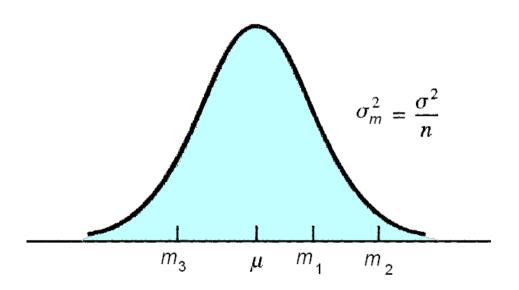
 H_a : not all 3 means are equal



Assumptions for ANOVA

Assumptions for Analysis of Variance

- 1. For each population, the response variable is normally distributed
- 2. The variance of the respond variable, denoted as σ^2 is the same for all of the populations.
- 3. The observations must be independent.

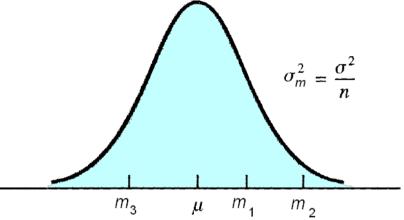


LUXEMBOURG

Some Calculations

Parameter	Florida	New York	N. Carolina
m=	5.55	8.35	7.05
overall mean=	6.98333		
var=	4.5763	4.7658	8.0500

Let's estimate the variance of sampling distribution. If H_0 is true, then all m_i belong to the same distribution



$$\sigma_m^2 = \frac{\sum_{i=1}^k (m_i - \overline{m})^2}{k - 1} = \frac{(5.55 - 6.98)^2 + (8.35 - 6.98)^2 + (7.05 - 6.98)^2}{3 - 1} = 1.96$$

$$\sigma^2 = n\sigma_m^2 = 20 \times 1.96 = 39.27 \quad \text{- this is called between-treatment estimate, works only at H}_0$$

$$\sigma^2 = n\sigma_m^2 = 20 \times 1.96 = 39.27$$
 - this is called between-treatment estimate, works only at H₀

At the same time, we can estimate the variance just by averaging out variances for each populations: this is called within-treatment estimate

$$\sigma^2 = \frac{\sum_{i=1}^k \sigma_i^2}{k} = \frac{4.58 + 4.77 + 8.05}{3} = 5.8$$

Do between-treatment estimate and withintreatment estimate give variances of the same "population"?

UNIVERSITÉ DU LUXEMBOURG

Some definitions

$$H_0$$
: $\mu_1 = \mu_2 = ... = \mu_k$

 H_a : not all k means are equal

Means for treatments

$$m_j = \frac{\sum_{i=1}^{n_j} x_{ij}}{n_j}$$

Variances treatments

$$s_{j}^{2} = \frac{\sum_{i=1}^{n_{j}} (x_{ij} - m_{j})^{2}}{n_{j} - 1}$$

Total mean

$$\overline{m} = \frac{\sum_{j=1}^{k} \sum_{i=1}^{n_j} x_{ij}}{n_T}$$

due to treatment

Sum squares

$$SSTR = \sum_{j=1}^{k} n_j (m_j - \overline{m})^2$$

Mean squares, $\sigma_{beetween}^2$

$$MSTR = \frac{SSTR}{k-1}$$

due to error

Sum squares

Mean squares, $\sigma_{\it within}^{\ \ 2}$

$SSE = \sum_{j=1}^{k} (n_j - 1) s_j^2$

$$MSE = \frac{SSE}{n_T - k}$$

$n_T = n_1 + n_2 + \dots + n_k$

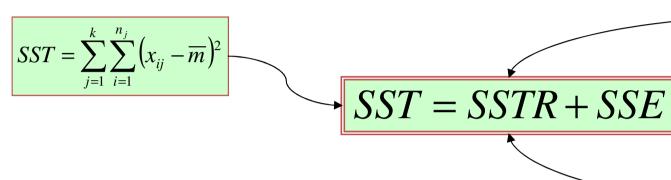
Test of variance p-value for the equality treatment effect

$$F = \frac{MSTR}{MSE}$$
 $p - value$

UNIVERSITÉ DU LUXEMBOURG

The Main Equation

Total sum squares



SS due to treatment

$$-SSTR = \sum_{j=1}^{k} n_j \left(m_j - \overline{m} \right)^2$$

SS due to error

$$SSE = \sum_{j=1}^{k} (n_{j} - 1) s_{j}^{2}$$

Total variability of the data include variability due to treatment and variability due to error

$$d.f.(SST) = d.f.(SSTR) + d.f.(SSE)$$
$$n_T - 1 = (k-1) + (n_T - k)$$

Partitioning

The process of allocating the total sum of squares and degrees of freedom to the various components.

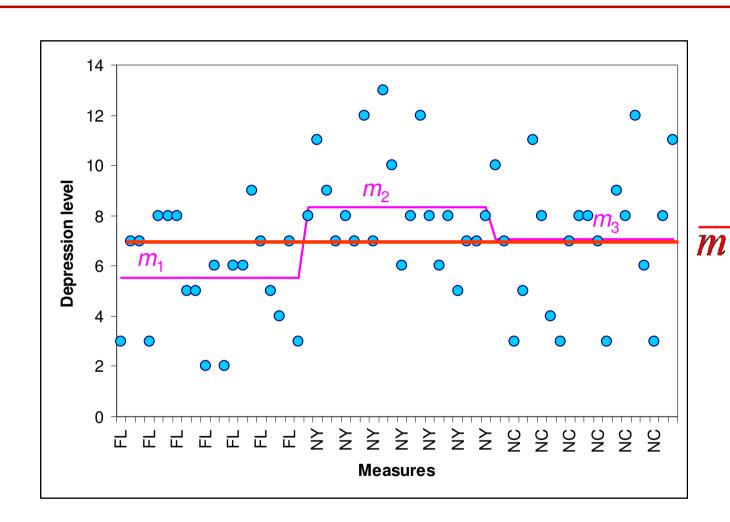
UNIVERSITÉ DU LUXEMBOURG

The Main Equation

SST: $\sum (\frac{1}{2})^2$

SSTR: $\sum \left(\uparrow \right)^2$

SSE: $\sum (\uparrow)^2$

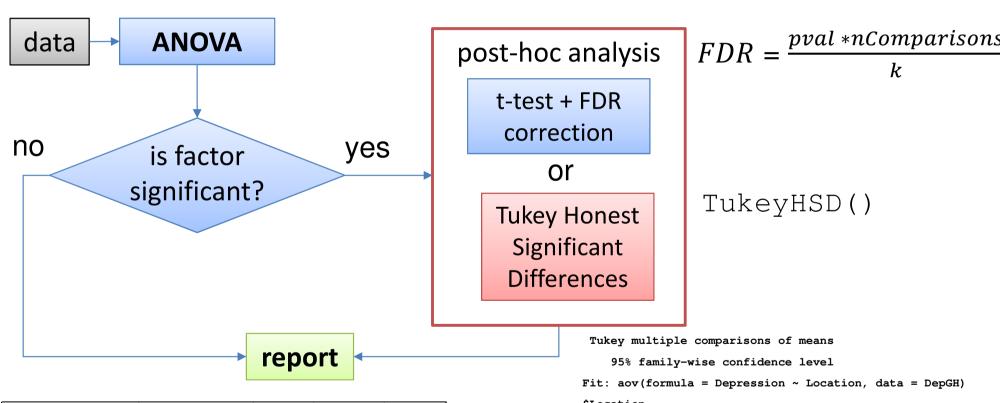


$$SST = SSTR + SSE$$

Post-hoc Analysis

Post-hoc analysis

allows for additional exploration of significant differences in the data, when significant effect of the factor was already confirmed (for example, by ANOVA).



Group1	Group2	p-value	k	FDR
Florida	New York	0.00021	1	0.00063
Florida	North Carolina	0.0667	2	0.10005
New York	North Carolina	0.11264	3	0.11264

\$Location

	diff	lwr	upr	p adj
New York-Florida	2.8	0.9677423	4.6322577	0.0014973
North Carolina-Florida	1.5	-0.3322577	3.3322577	0.1289579
North Carolina-New York	-1.3	-3.1322577	0.5322577	0.2112612

ANOVA Table

1-way ANOVA

```
degree of
                  sum
                                   F=vf/vr
       freedom
                         variances
                                           p-value
                 squares
factor
             Df Sum Sq Mean Sq F value Pr(>F)
Location
                  78.5
                          39.27
                                   6.773 0.0023 **
                 330.4
Residuals
             57
                           5.80
error
Signif. codes:
                 0 \***' 0.001 \**' 0.01 \*' 0.05 \.' 0.1 \' 1
```

2-way ANOVA

```
sum
          degree of
                                       F=vf/vr
                             variances
                                               p-value
                      squares
           freedom
factors
                  Df Sum Sq Mean Sq F value Pr(>F)
                                36.9
Location
                   2
                       73.8
                                        4.290 0.016 *
Health
                   1 1748.0
                              1748.0 203.094 <2e-16 ***
Location: Health
                       26.1
                                        1.517 0.224
                                13.1
                      981.2
                                 8.6
Residuals
                 114
                 0 \***' 0.001 \**' 0.01 \*' 0.05 \.' 0.1 \' 1
Signif. codes:
```


Linear Models for Transcriptomics

i – gene index

$$Y_{ij} = \mu_i + A_j + B_j + A_j * B_j + \epsilon_{ij}$$

 Y_{ii} – expression of *i-th* gene in *j*-th sample

 μ_i – mean expression of *i-th* gene

 A_i , B_i – factors

 $A_{i}*B_{i}$ – interaction: effect which cannot be explained by superposition A and B

limma – R package for DEA in microarrays based on linear models.

It is similar to t-test / ANOVA but using all available data for variance estimation, thus it has higher power when number of replicates is limited

edgeR – R package for DEA in RNA-Seq, based on linear models and negative binomial distribution of counts.

Better noise model results in higher power detecting differentially expressed genes

negative binomial process – number of tries before success: rolling a die until you get 6