L1. Descriptive Statistics, Distributions, Sampling

The data are located at http://edu.modas.lu/data

1. For beer data (a) Build a cross-tabulation or pivot table (table) for men's and women's beer preferences. (b) Transform the pivot table into a relative frequency table (probabilities) for men and women (prop.table). (c) Illustrate your findings using a plot (barplot).
2. Based on the cancer data set, calculate the mean (mean) and median (median) survival time for men and women (Male=1 Female=2) subpopulations. You can also use the summary function. Note: focus on dead patients (censoring status 1=censored, 2=dead).
3. For the rana data: (a) Calculate Pearson's and Spearman's correlations (cor) between the temperature and heart rate of a frog. (b) Illustrate by a scatter-plot (plot)

Work with mice data:
4. Calculate the mean Ending weight of male and female mice (separately for each sex).
5. Consider the 50 heaviest mice in the group. Build and draw the frequency distribution for their sex. You can use functions: order, sort, barplot, pie
6. Estimate the probability that a randomly selected mouse is lighter than 20 grams. You can use sum or mean applied to TRUE/FALSE vectors
7. Estimate the probability that a randomly selected mouse has a bleeding time bigger than 1 minute.
8. Provide a summary of the Bone mineral density of all mice.
9. Draw the distribution of Bone mineral density
10. Based on Weight change, do you have any potential outliers? If so, provide the IDs of suspicious mice. Now try with Iglewich-Hoaglin's method.
11. The volume of a liquid in bottles of one company is distributed normally with an expected value of 0.33 liter and a standard deviation of 0.01 .
a. Based on your knowledge about normal distribution, estimate the probability (pnorm) of buying a bottle containing less than 0.32 liters of the liquid.
b. Estimate the interval in which the volumes of 95% bottles are lying (many correct solutions exist, as the question is incomplete!) (qnorm)
12. A population of marine gastropods has shell lengths that are normally distributed (pnorm) with mean $\mu=7 \mathrm{~mm}$ and variance $\sigma^{2}=2.25 \mathrm{~mm}^{2}$. What proportion of the population will have a shell length between 5.5 mm and 8.5 mm ?
13. Test the central limit theorem $;$ Generate k random uniform random vectors with 1 e 4 elements (runif) and build their distributions for $k=1,2,6,12$

