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Lecture 3. Linear models

COURSE OVERVIEW

2

Outline

Lecture 1, 2024-02-05
numerical measures (location/variability/association), parametric/nonparametric
basic summary and visualization in R: barplot, boxplot, scatter plot
z-score, detection of outliers
continuous distributions (normal, Student, 2, F), linkage to probability
sampling distribution, methods for sampling 

Lecture 2, 2024-02-19
interval estimations for mean and proportion
hypotheses testing for mean(s), p-value, tails
number of samples
power of a test
non-parametric tests
multiple comparisons

Lecture 3, 2024-03-04
interval estimations and hypotheses for variance
model fitting and test for independence
linear models, ANOVA, posthoc analysis
simple and multiple linear regression

Lecture 4, 2024-04-08  (please, propose!)
factors in linear regression 
logistic regression
omics data analysis?
survival analysis?
clustering?
more practical exercise?

Let's work at a comfortable speed!

Materials and other courses:

http://edu.modas.lu

https://posit.co/downloads/https://cran.r-project.org/

http://edu.modas.lu/
https://posit.co/downloads/
https://cran.r-project.org/


Lecture 3. Linear models

HYPOTHESES FOR VARIANCE
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Confidence intervals for variance

Hypotheses for variance

Goodness of fit, test for independence

ANalysis Of VAriance (ANOVA)

Linear regression

Logistic regression
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INTERVAL ESTIMATION FOR VARIANCE
Variance Sampling Distribution
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Sampling distribution of (n-1)s2/2

Whenever a simple random sample of size n is 
selected from a normal population, the 
sampling distribution of (n-1)s2/2 has a
chi-square distribution (2) with n-1 degrees of 
freedom.

Variance
A measure of variability based on the squared 
deviations of the data values about the mean.
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 
2

2

1


s
n 

  2

12

2

1  ndf

s
n 





Lecture 3. Linear models

INTERVAL ESTIMATION FOR VARIANCE
2 Distribution
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2 distribution works only for 
sampling from normal population
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INTERVAL ESTIMATION FOR VARIANCE
2 Probabilities in Table and Excel

6

= CHISQ.DIST(2, n-1, true)

= CHISQ.DIST.RT(2, n-1)

= CHISQ.INV(/2, n-1)

= CHISQ.INV.RT(/2, n-1)

Right tailed (RT)Left tailed (standard)

pchisq(x = 2, df = n-1)

qchisq(p = /2, df = n-1)
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INTERVAL ESTIMATION FOR VARIANCE
2 Distribution for Interval Estimation
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2 distribution for d.f. = 19

qchisq(0.025,19)

qchisq(0.975,19)
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INTERVAL ESTIMATION FOR VARIANCE
Interval Estimation

8

  2

2
12

2
2

2

1  






s

n

2

2

2
2

2

2
1

2 )1()1(

 




snsn 






Suppose sample of n = 36 coffee cans is selected and m = 2.92 and s = 0.18 lbm

is observed. Provide 95% confidence interval for the standard deviation
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= CHISQ.INV(/2, n-1)

= CHISQ.INV.RT(/2, n-1)

qchisq(0.025,36-1)

qchisq(1-0.025,36-1)
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INTERVAL ESTIMATION FOR VARIANCE
Hypotheses about Population Variance
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H0: 
2  const

Ha: 
2 > const

H0: 
2  const

Ha: 
2 < const

H0: 
2 = const

Ha: 
2  const

 Lower Tail Test Upper Tail Test Two-Tailed Test 
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Rejection Rule: 

p-Value Approach 

Reject H0 if  

p-value   

Reject H0 if  
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p-value   

Rejection Rule: 
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VARIANCES OF TWO POPULATIONS
Sampling Distribution
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In many statistical applications we need a comparison between variances of two

populations. In fact well-known ANOVA-method is base on this comparison.

The statistics is build for the following measure:
2
2

2
1

s

s
F 

Sampling distribution of s1
2/s2

2 when 1
2= 2

2

Whenever a independent simple random samples of size n1 and n2 are selected from 
two normal populations with equal variances, the sampling of s1

2/s2
2 has F-distribution

with n1-1 degree of freedom for numerator and n2-1 for denominator. 

F-distribution for 20 d.f. in numerator and 20 d.f. in denominator

= F.DIST(x, df1,

df2,TRUE)

= F.INV(p, df1,

df2,TRUE)

var.test(data1,data2)

pf(x,df1,df2,…)

qf(p,df1,df2,…)

Distributions

= F.TEST(data1,data2)

Tests
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VARIANCES OF TWO POPULATIONS
Hypotheses about Variances of Two Populations
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H0: 1
2  2

2

Ha: 1
2 > 2

2

H0: 1
2 = 2

2

Ha: 1
2  2

2

 Upper Tail Test Two-Tailed Test 
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Note: Population 1 has the 
lager sample variance 
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Rejection Rule: 

p-Value Approach 

Reject H0 if  

p-value   

Reject H0 if  

p-value   

Rejection Rule: 

Critical Value Approach 

Reject H0 if FF   Reject H0 if FF   

 

var.test(data1,data2)

= F.TEST(data1,data2)

Tests
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VARIANCES OF TWO POPULATIONS
Example

12

schoolbus

# Milbank Gulf Park

1 35.9 21.6

2 29.9 20.5

3 31.2 23.3

4 16.2 18.8

5 19.0 17.2

6 15.9 7.7

7 18.8 18.6

8 22.2 18.7

9 19.9 20.4

10 16.4 22.4

11 5.0 23.1

12 25.4 19.8

13 14.7 26.0

14 22.7 17.1

15 18.0 27.9

16 28.1 20.8

17 12.1

18 21.4

19 13.4

20 22.9

21 21.0

22 10.1

23 23.0

24 19.4

25 15.2

26 28.2
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VARIANCES OF TWO POPULATIONS
Example

13

schoolbus

# Milbank Gulf Park

1 35.9 21.6

2 29.9 20.5

3 31.2 23.3

4 16.2 18.8

5 19.0 17.2

6 15.9 7.7

7 18.8 18.6

8 22.2 18.7

9 19.9 20.4

10 16.4 22.4

11 5.0 23.1

12 25.4 19.8

13 14.7 26.0

14 22.7 17.1

15 18.0 27.9

16 28.1 20.8

17 12.1

18 21.4

19 13.4

20 22.9

21 21.0

22 10.1

23 23.0

24 19.4

25 15.2

26 28.2

1. Let us start from estimation of the variances for 2 data sets

Milbank:    s1
2 = 48,   n1 = 26

Gulf Park:  s2
2 = 20,  n2 = 16

Milbank:    1
2  48  (29.591.5)

Gulf Park:  2
2  20  (10.947.9)

interval estimation (optionally)

2. Let us calculate the F-statistics

40.2
20

48
2
2

2
1 

s

s
F

3. … and p-value = 0.08

In Excel use one of the functions:

= 2*F.DIST.RT(F,n1-1,n2-1)

= F.TEST(data1,data2)

p-value = 0.08 <  = 0.1

In R use one of solutions:

2*(1-pf(2.4,25,15))

var.test(data1,data2)
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HYPOTHESES FOR VARIANCE
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Confidence intervals for variance

Hypotheses for variance

Goodness of fit, test for independence

ANalysis Of VAriance (ANOVA)

Linear regression

Logistic regression
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TEST OF GOODNESS OF FIT
Multinomial Population

15

Multinomial population 
A population in which each element is assigned to one and only one of several categories. The 
multinomial distribution extends the binomial distribution from two to three or more outcomes.

The proportions for 3 “classes” of patients 

with and without treatment are:

Experimental                   Control

ne=200                           nc=100 

Are the proportions significantly different

in control and experimental groups? 

The proportions for 3 The proportions for 3 ““classesclasses”” of patients of patients 

with and without treatment are:with and without treatment are:

Experimental                   ControlExperimental                   Control

nnee=200                           =200                           nncc=100 =100 

Are the proportions Are the proportions significantly differentsignificantly different

in control and experimental groups? in control and experimental groups? 

21%

32%

47%

21%

32%

47%
38%

34%

28%
38%

34%

28%

The proportions for 3 “classes” of patients 

with and without treatment are:

Experimental                   Control

ne=200                           nc=100 

Are the proportions significantly different

in control and experimental groups? 

The proportions for 3 The proportions for 3 ““classesclasses”” of patients of patients 

with and without treatment are:with and without treatment are:

Experimental                   ControlExperimental                   Control

nnee=200                           =200                           nncc=100 =100 

Are the proportions Are the proportions significantly differentsignificantly different

in control and experimental groups? in control and experimental groups? 

21%

32%

47%

21%

32%

47%
38%

34%

28%
38%

34%

28%

The new treatment for a disease is tested on 200 patients.

The outcomes are classified as:

A – patient is completely treated

B – disease transforms into a chronic form

C – treatment is unsuccessful

In parallel the 100 patients treated with standard methods

are observed

Contingency table = Crosstabulation
Contingency tables or crosstabulations
are used to record, summarize and 
analyze the relationship between two 
or more categorical (usually) variables.

Category Experimental Control

A 94 38

B 42 28

C 64 34

Sum 200 100



Lecture 3. Linear models

TEST OF GOODNESS OF FIT
Goodness of Fit
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The proportions for 3 “classes” of patients 

with and without treatment are:

Experimental                   Control

ne=200                           nc=100 

Are the proportions significantly different

in control and experimental groups? 

The proportions for 3 The proportions for 3 ““classesclasses”” of patients of patients 

with and without treatment are:with and without treatment are:

Experimental                   ControlExperimental                   Control

nnee=200                           =200                           nncc=100 =100 

Are the proportions Are the proportions significantly differentsignificantly different

in control and experimental groups? in control and experimental groups? 

21%

32%

47%

21%

32%

47%
38%

34%

28%
38%

34%

28%

The proportions for 3 “classes” of patients 

with and without treatment are:

Experimental                   Control

ne=200                           nc=100 

Are the proportions significantly different

in control and experimental groups? 

The proportions for 3 The proportions for 3 ““classesclasses”” of patients of patients 

with and without treatment are:with and without treatment are:

Experimental                   ControlExperimental                   Control

nnee=200                           =200                           nncc=100 =100 

Are the proportions Are the proportions significantly differentsignificantly different

in control and experimental groups? in control and experimental groups? 

21%

32%

47%

21%

32%

47%
38%

34%

28%
38%

34%

28%

Goodness of fit test 
A statistical test conducted to determine whether to 
reject a hypothesized probability distribution for a 
population.

Model  our assumption concerning the distribution, 
which we would like to test.

Observed frequency  frequency distribution for 
experimentally observed data, fi

Expected frequency  frequency distribution, which 
we would expect from our model, ei  







k

i i

ii

e

ef

1

2

2

Test statistics for 

goodness of fit

2 has k1 degree of freedom

Hypotheses for the test:

H0: the population follows a multinomial distribution

with the probabilities, specified by model

Ha: the population does not follow … model

At least 5 expected must be in 
each category!
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TEST OF GOODNESS OF FIT
Example
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The new treatment for a disease is tested on 200 patients.

The outcomes are classified as:

A – patient is completely treated

B – disease transforms into a chronic form

C – treatment is unsuccessful

In parallel the 100 patients treated with standard methods

are observed

1. Select the model and calculate expected 

frequencies

Let’s use control group (classical 

treatment) as a model, then:

3. Calculate 

p-value for 2 with 

d.f. = k1

p-value = 0.018, reject H0

2. Compare expected frequencies with

the experimental ones and build 2

 






k

i i

ii

e

ef

1

2

2

Category
Control 

frequencies

Model for 

control

Expected 

freq., e

A 38 0.38 76

B 28 0.28 56

C 34 0.34 68

Sum 100 1 200

Experimental 

freq., f

94

42

64

200

Category (f-e)2/e

A 4.263

B 3.500

C 0.235

Chi2 7.998

Category Experimental Control

A 94 38

B 42 28

C 64 34

Sum 200 100

= CHISQ.DIST.RT(2,d.f.)

Here k=3 => df=2

# input data

Tab = cbind(c(94,42,64),

c(38,28,34))

colnames(Tab) = 

c("exp","ctrl")

rownames(Tab) = 

c("A","B","C")

# control defines Model

mod=Tab[,2]/sum(Tab[,2])

# test Model for 'exp'

chisq.test(Tab[,1],p=mod)
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TEST OF INDEPENDENCE
Goodness of Fit for Independence Test: Example
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Alber's Brewery manufactures and distributes three types of beer: white, regular, and

dark. In an analysis of the market segments for the three beers, the firm's market

research group raised the question of whether preferences for the three beers differ

among male and female beer drinkers. If beer preference is independent of the gender

of the beer drinker, one advertising campaign will be initiated for all of Alber's beers.

However, if beer preference depends on the gender of the beer drinker, the firm will tailor

its promotions to different target markets.

H0: Beer preference is independent of

the gender of the beer drinker

Ha: Beer preference is not independent

of the gender of the beer drinker

sex\beer White Regular Dark Total

Male 20 40 20 80

Female 30 30 10 70

Total 50 70 30 150

beer 
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TEST OF INDEPENDENCE
Goodness of Fit for Independence Test: Example
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White Regular Dark Total

Model 0.3333 0.4667 0.2000 1

sex\beer White Regular Dark Total

Male 20 40 20 80

Female 30 30 10 70

Total 50 70 30 150

1. Build model 

assuming 

independence

2. Transfer the model into expected frequencies, multiplying model value by number in group

sex\beer White Regular Dark Total

Male 26.67 37.33 16.00 80

Female 23.33 32.67 14.00 70

Total 50 70 30 150

  
SizeSample

TotaljColumnTotaliRow
eij 

 





n

i

m

j ij

ijij

e

ef
2

2

3. Build 2 statistics

2 distribution with 

d.f.=(n  1)(m  1), 

provided that the expected 

frequencies are 5 or more 

for all categories.2 =6.122

4. Calculate p-value

p-value = 0.047, reject H0

= CHISQ.DIST.RT(2,d.f.)

# input data

Tab = rbind(c(20,40,20),

c(30,30,10))

colnames(Tab) = c("white", 

"regular","dark")

rownames(Tab) =  

c("male","female")

Tab

# it is simple:

chisq.test(Tab)
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TEST FOR CONTINUOUS DISTRIBUTIONS
Test for Normality: Example
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Chemline hires approximately 400 new employees annually for its four plants. The personnel director asks whether a normal

distribution applies for the population of aptitude test scores. If such a distribution can be used, the distribution would be

helpful in evaluating specific test scores; that is, scores in the upper 20%, lower 40%, and so on, could be identified quickly.

Hence, we want to test the null hypothesis that the population of test scores has a normal distribution. The study will be

based on 50 results.

Aptitude test scores

71 86 56 61 65

60 63 76 69 56

55 79 56 74 93

82 80 90 80 73

85 62 64 54 54

65 54 63 73 58

77 56 65 76 64

61 84 70 53 79

79 61 62 61 65

66 70 68 76 71

chemline

H0: The population of test scores has a normal distribution

with mean 68.42 and standard deviation 10.41

Ha: the population does not have a mentioned distribution

Mean 68.42

Standard Deviation 10.4141

Sample Variance 108.4527

Count 50



Lecture 3. Linear models

TEST FOR CONTINUOUS DISTRIBUTIONS
Test for Normality: Example

21

chemline

Mean 68.42

Standard Deviation 10.4141

Sample Variance 108.4527

Count 50

Bin

Observed 

frequency

Expected 

frequency

55.1 5 5

59.68 5 5

63.01 9 5

65.82 6 5

68.42 2 5

71.02 5 5

73.83 2 5

77.16 5 5

81.74 5 5

More 6 5

Total 50 50

 






k

i i

ii

e

ef

1

2

2
2 distribution with d.f.= k  p  1,

where p – number of estimated 
parameters, k – number of bins

p = 2  includes mean and variance

d.f. = 10  2  1

2 = 7.2

p-value = 0.41, 

cannot reject H0

More precise: 2 = 6.4 

#input data

x = scan( 

"http://edu.modas.l

u/data/txt/chemline

.txt", skip=1)

#Shapiro-Wilk

shapiro.test(x)

#Kolmogorov-Smirnov

ks.test(x,"pnorm",

mean=mean(x),

sd=sd(x))

#Jarque-Bera

library(tseries)

jarque.bera.test(x)

R: more advanced

https://datasharkie.com/how-to-test-for-normality-in-r/
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HYPOTHESES FOR VARIANCE
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Confidence intervals for variance

Hypotheses for variance

Goodness of fit, test for independence

ANalysis Of VAriance (ANOVA)

Linear regression

Logistic regression
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INTRODUCTION TO ANOVA
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Why ANOVA?

Means for more than 2 populations

We have measurements for 5 

conditions. Are the means for these 

conditions equal?

Validation of the effects

We assume that we have several 

factors affecting our data. Which 

factors are most significant? Which 

can be neglected?

If we would use pairwise comparisons,

what will be the probability of getting error?

Number of comparisons: 10
!3!2

!55

2 C

Probability of an error: 1–(0.95)10 = 0.4

ANOVA

example from Partek™

Partek_ANOVA.pps
http://edu.modas.lu/transcript/Partek_ANOVA.pps
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INTRODUCTION TO ANOVA
Example
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As part of a long-term study of individuals 65 years of age or older, sociologists and 

physicians at the Wentworth Medical Center in upstate New York investigated the relationship 

between geographic location and depression. A sample of 60 individuals, all in reasonably 

good health, was selected; 20 individuals were residents of Florida, 20 were residents of New 

York, and 20 were residents of North Carolina. Each of the individuals sampled was given a 

standardized test to measure depression. The data collected follow; higher test scores 

indicate higher levels of depression. 

Q: Is the depression level same in all 3 locations?

H0: 1= 2= 3

Ha: not all 3 means are equal

depression

1. Good health respondents

Florida New York N. Carolina

3 8 10

7 11 7

7 9 3

3 7 5

8 8 11

8 7 8

… … …
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INTRODUCTION TO ANOVA
Meaning
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H0: 1= 2= 3

Ha: not all 3 means are equal

0

2

4

6

8

10

12

14

F
L

F
L

F
L

F
L

F
L

F
L

F
L

N
Y

N
Y

N
Y

N
Y

N
Y

N
Y

N
Y

N
C

N
C

N
C

N
C

N
C

N
C

Measures

D
e
p

re
s
s
io

n
 l
e
v
e
l

m1

m2

m3
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INTRODUCTION TO ANOVA
Assumptions for ANOVA, ANOVA in R

26

Assumptions for Analysis of Variance

1. For each population, the response variable is normally distributed

2. The variance of the respond variable, denoted as 2 is the same for all of 
the populations.

3. The observations must be independent.

# check for normality

shapiro.test( residuals(model) )

# build the model

model = aov(x ~ fact1 + …, data)

# summary (anova table)

summary(model)

anova(model)

# posthoc

TukeyHSD(model)
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INTRODUCTION TO ANOVA
Some Calculations
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Let’s estimate the variance of sampling distribution. If

H0 is true, then all mi belong to the same distribution

Parameter Florida New York N. Carolina

m= 5.55 8.35 7.05

overall mean= 6.98333

var= 4.5763 4.7658 8.0500

 
96.1

13

)98.605.7()98.635.8()98.655.5(

1

222
1

2

2 














k

mm
k

i

i

m

27.3996.12022  mn – this is called between-treatment estimate, works only at H0

At the same time, we can estimate the variance just by averaging out variances for each

populations:

8.5
3

05.877.458.41

2

2 






k

k

i

i



– this is called within-treatment estimate

Does between-treatment estimate and
within-treatment estimate give variances of
the same “population”?
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Test of variance 

equality

MSE
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F  valuep 

p-value for the 

treatment effect
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Total sum squares
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SSESSTRSST 

Total variability of the data include variability
due to treatment and variability due to error

   knkn

SSEfdSSTRfdSSTfd

TT 



11

).(.).(.).(.

Partitioning
The process of allocating the total sum of squares and 
degrees of freedom to the various components.

SS due to treatment

SS due to error
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ANOVA table 
A table used to summarize the analysis of variance computations and results. It contains 
columns showing the source of variation, the sum of squares, the degrees of freedom, 
the mean square, and the F value(s).

In Excel use:

Data  Data Analysis  ANOVA Single Factor

Let’s perform for dataset 1: “good health”

depression2

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 78.53333 2 39.26667 6.773188 0.002296 3.158843

Within Groups 330.45 57 5.797368

Total 408.9833 59

SSTR

SSE

# read dataset

Dep = read.table(

"http://edu.modas.lu/data/

txt/depression2.txt",

header=T,

sep="\t",

as.is=FALSE)

str(Dep)

# consider only healthy

DepGH = Dep[Dep$Health ==

"good",]

# build 1-way ANOVA model

res1 = aov(Depression ~

Location, DepGH)

summary(res1)
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Post-hoc analysis 
allows for additional exploration of significant differences in the data, when significant 
effect of the factor was already confirmed (for example, by ANOVA).

data ANOVA

is factor 
significant?

yesno

report

post-hoc analysis

t-test

correction 
for multiple 

testing

Group1 Group2 p-value k FDR

Florida New York 0.00021 1 0.00063

Florida North Carolina 0.0667 2 0.10005

New York North Carolina 0.11264 3 0.11264

𝐹𝐷𝑅 = 
𝑝𝑣𝑎𝑙 ∗𝑛𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠

𝑘

# build 1-way ANOVA model

res1 = aov(Depression ~

Location, DepGH)

summary(res1)

# add post-hoc analysis

TukeyHSD(res1)

If you can – use Tukey
Honest Significant
Differences

if not – just do FDR-
adjustmentCalculate rank (k) by

= RANK.AVG(…)
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Kruskal-Wallis rank sum test 
is a non-parametric version of 1-way ANOVA (ANOVA on ranks).

# non-parametric

kruskal.test(DepGH)

# posthoc 1

pairwise.wilcox.test(DepGH$Depression, 

DepGH$Location, p.adjust.method = "bonf")

# posthoc 2

#install.packages("dunn.test")

library(dunn.test)

dunn.test(DepGH$Depression, DepGH$Location)
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Factor 
Another word for the independent 
variable of interest.

Treatments 
Different levels of a factor.

depression

Factor 1: Health 

good health

bad health 

Factor 2: Location

Florida

New York

North Carolina

Factorial experiment 
An experimental design that allows statistical 
conclusions about two or more factors.

Depression =  + Health + Location + HealthLocation + 

Interaction 
The effect produced when the levels of one factor interact with the levels of another 
factor in influencing the response variable.

# read dataset

Dep = read.table(

"http://edu.modas.lu/data/

txt/depression2.txt",

header=T,

sep="\t",

as.is=FALSE)

str(Dep)

# build 2-way ANOVA model

res2 = aov( Depression ~

Health + Location+

Health*Location, Dep)

summary(res2)

# post-hoc

TukeyHSD(res2)
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Replications 
The number of times each experimental 
condition is repeated in an experiment.
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Example

Df Sum Sq Mean Sq F value Pr(>F)    

Health            1 1748.0  1748.0 203.094 <2e-16 ***

Location          2   73.9    36.9   4.290  0.016 *  

Health:Location 2   26.1    13.1   1.517  0.224    

Residuals       114  981.2     8.6                   

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = Depression ~ Health + Location + Health * Location, 

data = Dep)

$Health

diff       lwr upr p adj

good-bad -7.633333 -8.694414 -6.572252     0

$Location

diff        lwr upr p adj

New York-Florida         1.850  0.2921599 3.4078401 0.0155179

North Carolina-Florida   0.475 -1.0828401 2.0328401 0.7497611

North Carolina-New York -1.375 -2.9328401 0.1828401 0.0951631

$`Health:Location`

diff         lwr upr p adj

good:Florida-bad:Florida -8.95 -11.6393115 -6.260689 0.0000000

bad:New York-bad:Florida 0.90  -1.7893115  3.589311 0.9264595

good:New York-bad:Florida -6.15  -8.8393115 -3.460689 0.0000000

bad:North Carolina-bad:Florida -0.55  -3.2393115  2.139311 0.9913348

good:North Carolina-bad:Florida -7.45 -10.1393115 -4.760689 0.0000000

bad:New York-good:Florida 9.85   7.1606885 12.539311 0.0000000

good:New York-good:Florida 2.80   0.1106885  5.489311 0.0361494

bad:North Carolina-good:Florida 8.40   5.7106885 11.089311 0.0000000

good:North Carolina-good:Florida 1.50  -1.1893115  4.189311 0.5892328

good:New York-bad:New York             -7.05  -9.7393115 -4.360689 0.0000000

bad:North Carolina-bad:New York        -1.45  -4.1393115  1.239311 0.6244461

good:North Carolina-bad:New York       -8.35 -11.0393115 -5.660689 0.0000000

bad:North Carolina-good:New York        5.60   2.9106885  8.289311 0.0000003

good:North Carolina-good:New York      -1.30  -3.9893115  1.389311 0.7262066

good:North Carolina-bad:North Carolina -6.90  -9.5893115 -4.210689 0.0000000

# check normality

shapiro.test( residuals(model) )
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Health

Location

Interaction

Error

ANOVA

Source of Variation SS df MS F P-value F crit

Sample 1748.033 1 1748.033 203.094 4.4E-27 3.92433

Columns 73.85 2 36.925 4.290104 0.015981 3.075853

Interaction 26.11667 2 13.05833 1.517173 0.223726 3.075853

Within 981.2 114 8.607018

Total 2829.2 119

portion of variation 

explained by factors
statistics related to 

significance

η2  or  R2 = SSx / SST

Cohen’s estimation 

of effect size

f = sqrt(  R2 / (1-R2)  )
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salaries

Salary/week Occupation Gender

872 Financial Manager Male

859 Financial Manager Male

1028 Financial Manager Male

1117 Financial Manager Male

1019 Financial Manager Male

519 Financial Manager Female

702 Financial Manager Female

805 Financial Manager Female

558 Financial Manager Female

591 Financial Manager Female

Q: Which factors have significant 

effect on the salary

Sourceof Variation SS df MS F P-value F crit

Sample 221880 1 221880 21.254 0.000112 4.25968

Columns 276560 2 138280 13.246 0.000133 3.40283

Interaction 115440 2 57720 5.5289 0.010595 3.40283

Within 250552 24 10439.7

Итого 864432 29

# read dataset

Sal = read.table(

"http://edu.modas.lu/data/txt/salaries.txt",

header=T,sep="\t",as.is=FALSE)

str(Sal)

# build 2-way ANOVA model

mod = aov(Salary.week ~

Occupation + Gender + Occupation*Gender, Sal)

summary(mod)

# post-hoc

TukeyHSD(mod)
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Example 2

Df Sum Sq Mean Sq F value   Pr(>F)    

Occupation         2 276560  138280  13.246 0.000133 ***

Gender             1 221880  221880  21.254 0.000112 ***

Occupation:Gender 2 115440   57720   5.529 0.010595 *  

Residuals         24 250552   10440                     

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = Salary.week ~ Occupation + Gender + Occupation * Gender, data = Sal)

$Occupation

diff       lwr upr p adj

Financial Manager-Computer Programmer   38 -76.11081 152.1108 0.6874260

Pharmacist-Computer Programmer         220 105.88919 334.1108 0.0001903

Pharmacist-Financial Manager           182  67.88919 296.1108 0.0015387

$Gender

diff      lwr upr p adj

Male-Female  172 94.99818 249.0018 0.0001119

$`Occupation:Gender`

diff        lwr upr p adj

Financial Manager:Female-Computer Programmer:Female -106 -305.80351  93.80351 0.5814961

Pharmacist:Female-Computer Programmer:Female 190   -9.80351 389.80351 0.0689592

Computer Programmer:Male-Computer Programmer:Female 56 -143.80351 255.80351 0.9508750

Financial Manager:Male-Computer Programmer:Female 238   38.19649 437.80351 0.0131635

Pharmacist:Male-Computer Programmer:Female 306  106.19649 505.80351 0.0010255

Pharmacist:Female-Financial Manager:Female 296   96.19649 495.80351 0.0015025

Computer Programmer:Male-Financial Manager:Female 162  -37.80351 361.80351 0.1616324

Financial Manager:Male-Financial Manager:Female 344  144.19649 543.80351 0.0002396

Pharmacist:Male-Financial Manager:Female 412  212.19649 611.80351 0.0000185

Computer Programmer:Male-Pharmacist:Female -134 -333.80351  65.80351 0.3334443

Financial Manager:Male-Pharmacist:Female 48 -151.80351 247.80351 0.9743050

Pharmacist:Male-Pharmacist:Female 116  -83.80351 315.80351 0.4872344

Financial Manager:Male-Computer Programmer:Male 182  -17.80351 381.80351 0.0889147

Pharmacist:Male-Computer Programmer:Male 250   50.19649 449.80351 0.0084855

Pharmacist:Male-Financial Manager:Male 68 -131.80351 267.80351 0.8950589
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EXPERIMENTAL DESIGN
Experiments

Aware of Batch Effect !

When designing your experiment always remember about various factors which can 
effect your data: batch effect, personal effect, lab effect... 

Day 1

Day 2

T = +30C

T = +10C

?
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EXPERIMENTAL DESIGN
Experiments

Completely randomized design 
An experimental design in which the treatments 
are randomly assigned to the experimental units.

We can nicely randomize:

Day effect

Batch effect
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EXPERIMENTAL DESIGN
Experiments

Blocking 
The process of using the same or similar experimental units for all treatments. The 
purpose of blocking is to remove a source of variation from the error term and hence 
provide a more powerful test for a difference in population or treatment means.

Day 1

Day 2
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EXPERIMENTAL DESIGN
Experiments

A good suggestion… 

Block what you can block, randomize
what you cannot, and try to avoid

unnecessary factors
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Q: Does mouse strain affect the weight (e.g. Starting 

weight)? Show the effects of sex and strain using ANOVA
mice

129S1/SvImJ A/J AKR/J BALB/cByJBTBR_T+_tf/JBUB/BnJ C3H/HeJ

1 Female 20.5 23.2 24.6 22.8 28 27.1 21.4

2 20.8 22.4 26 23.5 25.8 24.1 28.2

3 19.8 22.7 31 23.8 26 25.9 23.5

4 21 21.4 25.7 22.7 26.5 25.9 23.9

5 21.9 22.6 23.7 19.7 26.3 26 22.8

6 22.1 20 21.1 26.2 27 27.1 18.4

7 21.3 21.8 23.7 24.1 26 26.2 21.8

8 20.1 20.8 24.5 23.5 28.8 27.5 25

9 18.9 19.5 32.3 23.8 28 30.2 20.1

10 Male 24.7 25.8 42.8 29.3 34.1 36.2 31.2

11 27.2 27.7 32.6 32.2 33 36.9 28.2

12 23.9 29.9 34.8 29.7 38.7 34.4 26.7

13 26.3 24.8 32.8 30 39 34.3 29.3

14 26 22.9 34.8 27 31 31.7 33.1

15 23.3 24.5 32.8 30 32 33 28.2

16 26.5 24.6 33.6 33.1 33.7 33.2 31.2

17 27.4 21.6 30.7 30.6 33.1 34 27.7

18 27.5 26.9 36.5 28.7 32.5 31 27.5
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Confidence intervals for variance

Hypotheses for variance

Goodness of fit, test for independence

ANalysis Of VAriance (ANOVA)

Linear regression

Logistic regression



Lecture 3. Linear models

SIMPLE LINEAR REGRESSION
Example

46

Dependent variable 
The variable that is being predicted or explained. It is denoted by y.

Independent variable 
The variable that is doing the predicting or explaining. It is denoted by x.

Temperature Cell Number

20 83

21 139

22 99

23 143

24 164

25 233

26 198

27 261

28 235

29 264

30 243

31 339

32 331

33 346

34 350

35 368

36 360

37 397

38 361

39 358

40 381
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x

y
Cells are grown under different 

temperature conditions from 20

to 40. A researched would like to 

find a dependency between T and 

cell number. 

cells

Cells = read.table(

"http://edu.modas.lu/data/txt/cells.txt",

sep="\t",

header=TRUE)

str(Cells)

plot(Cells, pch=19)
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Simple linear regression 
Regression analysis involving one independent variable and one dependent variable in 
which the relationship between the variables is approximated by a straight line.

Building a regression means finding and tuning the model to explain the behaviour of the data
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  01)( xxy

Model for a simple linear regression:
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Regression model 
The equation describing how y is related to x and an error term; in simple linear 
regression, the regression model is y = 0 + 1x + 

Regression equation 
The equation that describes how the mean or expected value of the dependent variable 
is related to the independent variable; in simple linear regression, 
E(y) =0 + 1x
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  01)( xxy
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Estimated regression equation 
The estimate of the regression equation developed from sample 
data by using the least squares method. For simple linear 
regression, the estimated regression equation is y = b0 + b1x

cells

  01)( xxy

01)(ˆ bxbxy 

  01)( bxbxyE 

plot(Cells, pch=19)

abline(lm(Cell.Number ~ Temperature, Cells),col=2, lwd=2)

# add smooth curve (loess/lowess) (just fun)

lines(lowess(Cells$Temperature, Cells$Cell.Number),lty=2)
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  01)( xxyAssumptions for Simple Linear Regression

1. The error term  is a random variable with 0 mean, i.e. E[]=0

2. The variance of , denoted by  2, is the same for all values of x

3. The values of  are independent

3. The term  is a normally distributed variable
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Least squares method 
A procedure used to develop the estimated regression equation. 

The objective is to minimize   
2ˆ

ii yy

  
 21

1

x

yixi

mx

mymx
b







xy mbmb 10 Intersect:

Slope:
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 
2

ˆ  ii yySSE

Sum squares due to error
y = 15.339x - 191.01
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 2  yi mySST

Sum squares total

 2ˆ  yi mySSR

Sum squares due to regression

SSESSRSST 

The Main Equation
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Coefficient of determination 
A measure of the goodness of fit of the estimated regression 
equation. It can be interpreted as the proportion of the 
variability in the dependent variable y that is explained by the 
estimated regression equation.

 
2

ˆ  ii yySSE

 2  yi mySST

 2ˆ  yi mySSR

SSESSRSST 

y = 15.339x - 191.01

R
2
 = 0.9041
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Correlation coefficient 
A measure of the strength of the linear relationship between 
two variables (previously discussed in Lecture 1).

  2
1sign Rbr 

𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
= 1 −

𝑆𝑆𝐸

𝑆𝑆𝑇

NOTE: There is a non-obvious case when R2 < 0. 
It means that the model is worse than the mean value
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2

2




n

SSE
MSEs

2


n

SSE
MSEs

i-th residual 
The difference between the observed value of the dependent variable and the value predicted using 
the estimated regression equation; for the i-th observation the i-th residual is: ii yy ˆ

Mean square error 
The unbiased estimate of the variance of the error term 2. It is denoted by MSE or s2.
Standard error of the estimate: the square root of the mean square error, denoted by s. It is the 
estimate of , the standard deviation of the error term .



Lecture 3. Linear models

TESTING FOR SIGNIFICANCE
Sampling Distribution for b1

57

  01)( xxy

01)(ˆ bxbxy 

11][ bEExpected value

 2
1

 



xi

b

mx


St.deviatiation
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H0: 1 = 0 insignificant

Ha: 1  0

1. Build a t-test statistics.

 211

1

  xi
b

mx
s

bb
t



2. Calculate p-value for t

MSE

MSR
F 

1. Build a F-test statistics.

2. Calculate a p-value
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cells

= INTERCEPT(y,x)

= SLOPE(y,x)

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.95091908

R Square 0.9042471

Adjusted R Square 0.89920747

Standard Error 31.7623796

Observations 21

ANOVA

df SS MS F Significance F

Regression 1 181015.1117 181015.11 179.4274 3.95809E-11

Residual 19 19168.12641 1008.8488

Total 20 200183.2381

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -190.783550 35.031618 -5.446039 2.96E-05 -264.10557 -117.46153 -264.10557 -117.46153

Temperature 15.332468 1.144637 13.395051 3.96E-11 12.93671537 17.7282197 12.93671537 17.7282197

model=lm(Cell.Number~Temperature, data=Cells)

# Regression table

summary(model)

# ANOVA table

anova(model)

# intercept/slope

model$coefficients

In R you should run the complete analysis:
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Confidence interval 
The interval estimate of the mean value of y for a given value of x. 

Prediction interval 
The interval estimate of an individual value of y for a given value of x.
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cells

x = data$Temperature

y = data$Cell.Number

res = lm(y~x) 

res

summary(res)

# draw the data

x11()

plot(x,y)

# draw the regression and its confidence (95%)

lines(x, predict(res,int = "confidence")[,1],col=4,lwd=2)

lines(x, predict(res,int = "confidence")[,2],col=4)

lines(x, predict(res,int = "confidence")[,3],col=4)

# draw the prediction for the values (95%)

lines(x, predict(res,int = "pred")[,2],col=2)

lines(x, predict(res,int = "pred")[,3],col=2)

20 25 30 35 40
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0
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0
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0
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0
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rana

A biology student wishes to determine the relationship between temperature and heart rate

in leopard frog, Rana pipiens. He manipulates the temperature in 2 increment ranging from

2 to 18C and records the heart rate at each interval. His data are presented in table rana.txt

1) Build the model and provide the p-value for linear dependency

2) Provide interval estimation for the slope of the dependency

3) Estimate 95% prediction interval for heart rate at 15
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Example: swiss dataset

Often one variable is not enough, and we need several independent variables to predict dependent one. Let’s

consider R internal swiss dataset: standardized fertility measure and socio-economic indicators for 47 French-
speaking provinces of Switzerland at about 1888. See ?swiss

swiss

## 'data.frame':    47 obs. of  6 variables:

##  $ Fertility       : num 80.2 83.1 92.5 85.8 76.9 76.1 83.8 92.4 82.4 82.9 ...

##  $ Agriculture     : num 17 45.1 39.7 36.5 43.5 35.3 70.2 67.8 53.3 45.2 ...

##  $ Examination     : int 15 6 5 12 17 9 16 14 12 16 ...

##  $ Education       : int 12 9 5 7 15 7 7 8 7 13 ...

##  $ Catholic        : num 9.96 84.84 93.4 33.77 5.16 ...

##  $ Infant.Mortality: num 22.2 22.2 20.2 20.3 20.6 26.6 23.6 24.9 21 24.4 ...

#install.packages("PerformanceAnalytics")

library(PerformanceAnalytics)

chart.Correlation(swiss)

modAll = lm(Fertility ~ . , data = swiss)

summary(modAll)

plot(swiss$Fertility, predict(modAll,swiss),xlab="Real 

Fertility",ylab="Predicted Fertility",pch=19)

abline(a=0,b=1,col=2,lty=2) Check further analysis in the HTML…
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Recommendations swiss

 Check whether your linear model is adequate (visualize residual, draw lowess curve)

 Check the significance of the variables

 Check and try to avoid correlated variables

 If you need to choose optimal variables: 

o maximize R2

o minimize information criteria: BIC and AIC

 Add / remove variable and compare models using likelihood ratio or chi2 test.

o anova(modAll, modSig)

https://en.wikipedia.org/wiki/Bayesian_information_criterion
https://en.wikipedia.org/wiki/Akaike_information_criterion
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in R: glm(…, family="binomial")

Mice = read.table(

"http://edu.modas.lu/data/txt/mice.txt",

header=T,sep="\t",as.is=FALSE)

str(Mice)

## let's remove animals with NA values

ikeep = apply(is.na(Mice),1,sum) == 0

model = glm( Sex ~ Blood.pH +

Bone.mineral.density + Lean.tissues.weight

+ Ending.weight,

data = Mice[ikeep,],

family = "binomial")

summary(model)

Example:

http://edu.modas.lu/modas_pm/part2.html

To be continued in Lecture 4…

http://edu.modas.lu/modas_pm/part2.html
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Thank you for your 

attention

QUESTIONS ?


