

Multiomics Data Science Group (MODAS) Department of Cancer Research, LIH

**Bioinformatics** Platform (BIOINFO) Department of Medical Informatics, LIH

## **BIOSTATISTICS** for PhDs

Lecture 3

### **Linear Models**

**Peter Nazarov** 

2024-03-04

Email: <u>petr.nazarov@lih.lu</u> Skype: pvn.public http://edu.modas.lu



### **COURSE OVERVIEW**

### Outline

### ✦ Lecture 1, 2024-02-05

- Inumerical measures (location/variability/association), parametric/nonparametric
- ◆ basic summary and visualization in R: barplot, boxplot, scatter plot
- ✤ z-score, detection of outliers
- $\bullet$  continuous distributions (normal, Student,  $\chi^2$ , F), linkage to probability
- ◆ sampling distribution, methods for sampling

### **♦** Lecture 2, 2024-02-19

- interval estimations for mean and proportion
- hypotheses testing for mean(s), p-value, tails
- number of samples
- ♦ power of a test
- non-parametric tests
- multiple comparisons

### Let's work at a comfortable speed!

Materials and other courses:

### http://edu.modas.lu

https://cran.r-project.org/ https://posit.co/downloads/

### ✤ Lecture 3, 2024-03-04

- interval estimations and hypotheses for variance
- model fitting and test for independence
- Iinear models, ANOVA, posthoc analysis
- simple and multiple linear regression
- **◆ Lecture 4, 2024-04-08** (*please, propose!*)
  - ◆ factors in linear regression
  - ◆ logistic regression
  - omics data analysis?
  - ♦ survival analysis?
  - ♦ clustering?
  - ♦ more practical exercise?



Confidence intervals for variance Hypotheses for variance Goodness of fit, test for independence ANalysis Of VAriance (ANOVA) Linear regression Logistic regression



### **Variance Sampling Distribution**

#### Variance

A measure of variability based on the squared deviations of the data values about the mean.

population



sample



The interval estimation for variance is build using the following measure:

Sampling distribution of  $(n-1)s^2/\sigma^2$ Whenever a simple random sample of size n is selected from a normal population, the

sampling distribution of  $(n-1)s^2/\sigma^2$  has a **chi-square distribution**  $(\chi^2)$  with *n*-1 degrees of freedom.









 $\chi^2$  Distribution



LUXEMBOURG INSTITUTE OF HEALTH

### **INTERVAL ESTIMATION FOR VARIANCE**

### $\chi^2$ Probabilities in Table and Excel





| Degrees    |       |       |        | Area in | Upper Ta | il     |        |        |
|------------|-------|-------|--------|---------|----------|--------|--------|--------|
| of Freedom | .99   | .975  | .95    | .90     | .10      | .05    | .025   | .01    |
| 1          | .000  | .001  | .004   | .016    | 2.706    | 3.841  | 5.024  | 6.635  |
| 2          | .020  | .051  | .103   | .211    | 4.605    | 5.991  | 7.378  | 9.210  |
| 3          | .115  | .216  | .352   | .584    | 6.251    | 7.815  | 9.348  | 11.345 |
| 4          | .297  | .484  | .711   | 1.064   | 7.779    | 9.488  | 11.143 | 13.277 |
| 5          | .554  | .831  | 1.145  | 1.610   | 9.236    | 11.070 | 12.832 | 15.086 |
| 6          | .872  | 1.237 | 1.635  | 2.204   | 10.645   | 12.592 | 14.449 | 16.812 |
| 7          | 1.239 | 1.690 | 2.167  | 2.833   | 12.017   | 14.067 | 16.013 | 18.475 |
| 8          | 1.647 | 2.180 | 2.733  | 3.490   | 13.362   | 15.507 | 17.535 | 20.090 |
| 9          | 2.088 | 2.700 | 3.325  | 4.168   | 14.684   | 16.919 | 19.023 | 21.666 |
| 10         | 2.558 | 3.247 | 3.940  | 4.865   | 15.987   | 18.307 | 20.483 | 23.209 |
| 11         | 3.053 | 3.816 | 4.575  | 5.578   | 17.275   | 19.675 | 21.920 | 24.725 |
| 12         | 3.571 | 4.404 | 5.226  | 6.304   | 18.549   | 21.026 | 23.337 | 26.217 |
| 13         | 4.107 | 5.009 | 5.892  | 7.041   | 19.812   | 22.362 | 24.736 | 27.688 |
| 14         | 4.660 | 5.629 | 6.571  | 7.790   | 21.064   | 23.685 | 26.119 | 29.141 |
| 15         | 5.229 | 6.262 | 7.261  | 8.547   | 22.307   | 24.996 | 27.488 | 30.578 |
| 16         | 5.812 | 6.908 | 7.962  | 9.312   | 23.542   | 26.296 | 28.845 | 32.000 |
| 17         | 6.408 | 7.564 | 8.672  | 10.085  | 24.769   | 27.587 | 30.191 | 33.409 |
| 18         | 7.015 | 8.231 | 9.390  | 10.865  | 25.989   | 28.869 | 31.526 | 34.805 |
| 19         | 7.633 | 8.907 | 10.117 | 11.651  | 27.204   | 30.144 | 32.852 | 36.191 |



 $\chi^2$  Distribution for Interval Estimation





#### **Interval Estimation**



Suppose sample of n = 36 coffee cans is selected and m = 2.92 and s = 0.18 lbm is observed. Provide 95% confidence interval for the standard deviation

$$\frac{(36-1)0.18^2}{53.203} \le \sigma^2 \le \frac{(36-1)0.18^2}{20.569} \qquad \begin{tabular}{ll} $ \begin$$



### **Hypotheses about Population Variance**

| $H_0: \sigma^2 \leq \text{const}$ | $H_0: \sigma^2$                        | ≥ const                                | $H_0$ : $\sigma^2 = \text{const}$                                         |
|-----------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------------------------------------|
| $H_{\rm a}$ : $\sigma^2$ > const  | $H_{a}$ : $\sigma^{2}$                 | < const                                | $H_{a}$ : $\sigma^{2} \neq \text{const}$                                  |
|                                   | <b></b>                                |                                        | $\downarrow$                                                              |
|                                   | Lower Tail Test                        | Upper Tail Test                        | <b>Two-Tailed Test</b>                                                    |
| Hypotheses                        | $H_0: \sigma^2 \ge \sigma_0^2$         | $H_0: \sigma^2 \le \sigma_0^2$         | $H_0: \sigma^2 = \sigma_0^2$                                              |
|                                   | $H_a: \sigma^2 < \sigma_0^2$           | $H_a: \sigma^2 > \sigma_0^2$           | $H_a: \sigma^2 \neq \sigma_0^2$                                           |
| Test Statistic                    | $\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$ | $\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$ | $\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$                                    |
| <b>Rejection Rule:</b>            | Reject H <sub>0</sub> if               | Reject H <sub>0</sub> if               | Reject H <sub>0</sub> if                                                  |
| p-Value Approach                  | p-value $\leq \alpha$                  | p-value $\leq \alpha$                  | p-value $\leq \alpha$                                                     |
| <b>Rejection Rule:</b>            | Reject H <sub>0</sub> if               | Reject H <sub>0</sub> if               | Reject H <sub>0</sub> if                                                  |
| <b>Critical Value Approach</b>    | $\chi^2 \leq \chi^2_{(1-lpha)}$        | $\chi^2 \ge \chi^2_{lpha}$             | $\chi^2 \leq \chi^2_{(1-\alpha/2)}$ or if $\chi^2 \geq \chi^2_{\alpha/2}$ |



### **VARIANCES OF TWO POPULATIONS**

### **Sampling Distribution**

In many statistical applications we need a comparison between variances of two populations. In fact well-known ANOVA-method is base on this comparison.

The statistics is build for the following measure:



#### **Distributions**



pf(x,df1,df2,...)
qf(p,df1,df2,...)



Whenever a independent simple random samples of size  $n_1$  and  $n_2$  are selected from two normal populations with equal variances, the sampling of  $s_1^2/s_2^2$  has F-distribution with  $n_1$ -1 degree of freedom for numerator and  $n_2$ -1 for denominator.

F-distribution for 20 d.f. in numerator and 20 d.f. in denominator



### **Tests**

= F.TEST (data1, data2)

var.test(data1,data2)

#### Lecture 3. Linear models



### **VARIANCES OF TWO POPULATIONS**

**Hypotheses about Variances of Two Populations** 



| $H_0: \sigma_1^2 \le \sigma_2^2$     | $H_0: \sigma_1^2$          |
|--------------------------------------|----------------------------|
| $H_{\rm a}: \sigma_1^2 > \sigma_2^2$ | $H_{\rm a}$ : $\sigma_1^2$ |
|                                      |                            |

| $\pi_0 : \sigma_1^2 = \sigma_2^2$           |
|---------------------------------------------|
| $H_{a}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$ |
|                                             |
| <br>                                        |

2

|                         | Upper Tail Test                    | <b>Two-Tailed Test</b>                              |
|-------------------------|------------------------------------|-----------------------------------------------------|
| Hypotheses              | $H_0: \sigma_1^2 \le \sigma_2^2$   | $H_0: \sigma_1^2 = \sigma_2^2$                      |
|                         | $H_a: \sigma_1^2 > \sigma_2^2$     | $H_a: \sigma_1^2 \neq \sigma_2^2$                   |
|                         |                                    | Note: Population 1 has the<br>lager sample variance |
| Test Statistic          | $F = \frac{s_1^2}{s_2^2}$          | $F = \frac{s_1^2}{s_2^2}$                           |
| <b>Rejection Rule:</b>  | Reject H <sub>0</sub> if           | Reject H <sub>0</sub> if                            |
| p-Value Approach        | p-value $\leq \alpha$              | p-value $\leq \alpha$                               |
| <b>Rejection Rule:</b>  | Reject $H_0$ if $F \ge F_{\alpha}$ | Reject $H_0$ if $F \ge F_{\alpha}$                  |
| Critical Value Approach |                                    |                                                     |

### **Tests**

= F.TEST (data1, data2)

var.test(data1, data2)

LUXEMBOURG INSTITUTE OF HEALTH

### **VARIANCES OF TWO POPULATIONS**

#### Example

| schoolbus |         |           |  |  |  |  |
|-----------|---------|-----------|--|--|--|--|
|           |         |           |  |  |  |  |
| #         | Milbank | Gulf Park |  |  |  |  |
| 1         | 35.9    | 21.6      |  |  |  |  |
| 2         | 29.9    | 20.5      |  |  |  |  |
| 3         | 31.2    | 23.3      |  |  |  |  |
| 4         | 16.2    | 18.8      |  |  |  |  |
| 5         | 19.0    | 17.2      |  |  |  |  |
| 6         | 15.9    | 7.7       |  |  |  |  |
| 7         | 18.8    | 18.6      |  |  |  |  |
| 8         | 22.2    | 18.7      |  |  |  |  |
| 9         | 19.9    | 20.4      |  |  |  |  |
| 10        | 16.4    | 22.4      |  |  |  |  |
| 11        | 5.0     | 23.1      |  |  |  |  |
| 12        | 25.4    | 19.8      |  |  |  |  |
| 13        | 14.7    | 26.0      |  |  |  |  |
| 14        | 22.7    | 17.1      |  |  |  |  |
| 15        | 18.0    | 27.9      |  |  |  |  |
| 16        | 28.1    | 20.8      |  |  |  |  |
| 17        | 12.1    |           |  |  |  |  |
| 18        | 21.4    |           |  |  |  |  |
| 19        | 13.4    |           |  |  |  |  |
| 20        | 22.9    |           |  |  |  |  |
| 21        | 21.0    |           |  |  |  |  |
| 22        | 10.1    |           |  |  |  |  |
| 23        | 23.0    |           |  |  |  |  |
| 24        | 19.4    |           |  |  |  |  |
| 25        | 15.2    |           |  |  |  |  |
| 26        | 28.2    |           |  |  |  |  |

Dullus County Schools is renewing its school bus service contract for the coming year and must select one of two bus companies, the Milbank Company or the Gulf Park Company. We will use the variance of the arrival or pickup/delivery times as a primary measure of the quality of the bus service. Low variance values indicate the more consistent and higherquality service. If the variances of arrival times associated with the two services are equal Dullus School administrators will select the company offering the better financial terms However, if the sample data on bus arrival times for the two companies indicate a significant difference between the variances, the administrators may want to give special consideration to the company with the better or lower variance service. The appropriate hypotheses follow

$$H_0: \sigma_1^2 = \sigma_2^2$$
$$H_a: \sigma_1^2 \neq \sigma_2^2$$

If  $H_0$  can be rejected, the conclusion of unequal service quality is appropriate. We will us a level of significance of  $\alpha = .10$  to conduct the hypothesis test.





### **VARIANCES OF TWO POPULATIONS**

Example

| s                | chool        | .bus      | 1. Let us start from estimation of the variances for 2 data sets |             |                                  |             |
|------------------|--------------|-----------|------------------------------------------------------------------|-------------|----------------------------------|-------------|
| #                | Milbank      | Gulf Park | 1                                                                | interval es | stimation (                      | optionally) |
| - <del>#</del> 1 | 35.9         | 21.6      | Milbank: $s_4^2 = 48$ . $n_4 = 26$                               | Milbonk     | $\sigma^2 \sim 10$               | (20.5.01.5) |
| 2                | 29.9         | 20.5      |                                                                  | ivilidatik. | 0 <sub>1</sub> <sup>-</sup> ≈ 40 | (29.5-91.5) |
| 3                | 31.2         | 23.3      | Gulf Park: $s_2^2 = 20$ , $n_2 = 16$                             | Gulf Park:  | $\sigma_2^2 \approx 20$          | (10.9÷47.9) |
| 4                | 16.2         | 18.8      |                                                                  |             | - 2                              | ( )         |
| 5                | 19.0         | 17.2      |                                                                  |             |                                  |             |
| 6                | 15.9         | 7.7       |                                                                  |             |                                  |             |
| 7                | 18.8         | 18.6      | O Lative coloulate the Catatistics                               |             |                                  |             |
| 8                | 22.2         | 18.7      | 2. Let us calculate the F-statistics                             |             |                                  |             |
| 9                | 19.9         | 20.4      | 2 10                                                             |             |                                  |             |
| 10               | 16.4         | 22.4      | $E = s_1^2 = 48 - 2.40$                                          |             |                                  |             |
| 11               | 5.0          | 23.1      | $F = \frac{1}{2} = \frac{1}{20} = 2.40$                          |             |                                  |             |
| 12               | 25.4         | 19.8      | $s_2^- 20$                                                       |             |                                  |             |
| 13               | 14.7         | 26.0      |                                                                  |             |                                  |             |
| 14               | 22.7         | 17.1      | 3 and p-value = $0.08$                                           |             |                                  |             |
| 15               | 18.0         | 27.9      |                                                                  |             |                                  |             |
| 16               | 28.1         | 20.8      |                                                                  |             |                                  |             |
| 17               | 12.1         |           | p-value = $0.08 < \alpha = 0.1$                                  |             |                                  |             |
| 10               | 21.4<br>12.4 |           |                                                                  |             |                                  |             |
| 20               | 13.4<br>22.0 |           |                                                                  |             |                                  |             |
| 20               | 22.9         |           | In Ruse one of soluti                                            | ions        |                                  |             |
| 22               | 10.1         |           | In Excel use one of the functions:                               | 10115.      |                                  |             |
| 23               | 23.0         |           |                                                                  | 1 5 \ \     |                                  |             |
| 24               | 19.4         |           | $\Rightarrow = 2 \times F.DIST.RT(F, n_1 - 1, n_2 - 1)$          | ,10))       |                                  |             |
| 25               | 15.2         |           |                                                                  |             |                                  |             |
| 26               | 28.2         |           | <pre></pre>                                                      | ,data2)     |                                  |             |



Confidence intervals for variance Hypotheses for variance Goodness of fit, test for independence ANalysis Of VAriance (ANOVA) Linear regression Logistic regression



### **TEST OF GOODNESS OF FIT**

#### **Multinomial Population**

#### **Multinomial population**

A population in which each element is assigned to one and only one of several categories. The multinomial distribution extends the binomial distribution from two to three or more outcomes.

**Contingency table = Crosstabulation** Contingency tables or crosstabulations are used to record, summarize and analyze the relationship between two or more categorical (usually) variables. The new treatment for a disease is tested on 200 patients. The outcomes are classified as:

- A patient is completely treated
- B disease transforms into a chronic form
- C treatment is unsuccessful 😕

In parallel the 100 patients treated with standard methods are observed

| Category | Experimental | Control |
|----------|--------------|---------|
| А        | 94           | 38      |
| В        | 42           | 28      |
| С        | 64           | 34      |
| Sum      | 200          | 100     |





Are the proportions *significantly different* in control and experimental groups?



### **TEST OF GOODNESS OF FIT**

### **Goodness of Fit**

#### **Goodness of fit test**

A statistical test conducted to determine whether to reject a hypothesized probability distribution for a population.

**Model** – our assumption concerning the distribution, which we would like to test.

**Observed frequency** – frequency distribution for experimentally observed data,  $f_i$ 

**Expected frequency** – frequency distribution, which we would expect from our **model**,  $e_i$ 

#### Hypotheses for the test:

 $H_0$ : the population follows a multinomial distribution with the probabilities, specified by **model** 

 $H_{\rm a}$ : the population does not follow ... model



Test statistics for goodness of fit



 $\chi^2$  has *k***-1** degree of freedom

At least 5 expected must be in each category!

#### Lecture 3. Linear models



### **TEST OF GOODNESS OF FIT**

#### Example

| The new t     | treatment for        | a disease is   | tested on 20 | 0 patients.  | Category       | / Experir                     | nental          | Control              | # input data                         |
|---------------|----------------------|----------------|--------------|--------------|----------------|-------------------------------|-----------------|----------------------|--------------------------------------|
| The outco     | omes are clas        | ssified as:    |              |              | Α              | 9,                            | 4               | 38                   | Tab = $cbind(c(94, 42, 64))$ ,       |
| <b>A</b> – pa | tient is <b>comp</b> | oletely treate | ed           |              | В              | 42                            | 2               | 28                   | c(38,28,34))                         |
| B – dis       | sease transfo        | orms into a cl | hronic form  |              | С              | 6                             | 4               | 34                   | colnames(Tab) =                      |
| C – tre       | eatment is un        | successful     | 8            |              | Sum            | 20                            | 0               | 100                  | c("exp","ctrl")                      |
| In parallel   | l the 100 pat        | ients treated  | with standar | d methods    |                |                               |                 |                      | rownames (Tab) =                     |
| are obser     | ved                  |                |              |              |                |                               |                 |                      |                                      |
|               |                      |                |              |              |                |                               |                 |                      |                                      |
| 1. Select     | t the model          | and calcul     | ate expecte  | d            | <b>2.</b> Comp | are expec                     | ted freque      | encies with          | <i># control defines Model</i>       |
| frequenc      | cies                 |                |              | 1            | the expe       | rimental o                    | nes and b       | uild χ²              | <pre>mod=Tab[,2]/sum(Tab[,2])</pre>  |
| Let's use     | e control ar         | oup (classio   | cal          |              |                | $\gamma^2 = \sum_{k=1}^{k} ($ | $(f_i - e_i)^2$ |                      |                                      |
| treatmen      | nt) as a mo          | del. then:     |              |              |                | $\chi - \sum_{i=1}^{n}$       | $e_i$           |                      | <pre># test Model for 'exp'</pre>    |
| aoaanor       |                      | aoi, aioin     |              | 1            |                | 7                             |                 |                      | <pre>chisq.test(Tab[,1],p=mod)</pre> |
| 0.1           | Control              | Model for      | Expected     | Experimental |                |                               | <b>3.</b> Ca    | Iculate              |                                      |
| Category      | frequencies          | control        | freq., e     | freq., f     | Categor        | y (f-e)2/e                    | p-valu          | Le for $\chi^2$ with |                                      |
| А             | 38                   | 0.38           | 76           | 94           | А              | 4.263                         | d.f. =          | <i>k</i> –1          |                                      |
| В             | 28                   | 0.28           | 56           | 42           | В              | 3.500                         |                 |                      |                                      |
| С             | 34                   | 0.34           | 68           | 64           | C              | 0.235                         |                 |                      |                                      |
| Sum           | 100                  | 1              | 200          | 200          | Chi2           | 7.998                         | Here k          | <=3 => df=2          |                                      |
|               |                      |                |              |              |                |                               |                 |                      |                                      |

• = CHISQ.DIST.RT( $\chi^2$ , d.f.)

p-value = 0.018, reject H<sub>0</sub>



### **TEST OF INDEPENDENCE**

#### **Goodness of Fit for Independence Test: Example**

Alber's Brewery manufactures and distributes three types of beer: **white**, **regular**, and **dark**. In an analysis of the market segments for the three beers, the firm's market research group raised the question of whether preferences for the three beers differ among **male** and **female** beer drinkers. If beer preference is independent of the gender of the beer drinker, one advertising campaign will be initiated for all of Alber's beers. However, if beer preference depends on the gender of the beer drinker, the firm will tailor its promotions to different target markets.

#### beer



 $H_0$ : Beer preference is **independent** of the gender of the beer drinker

 $H_{\rm a}$ : Beer preference is **not independent** of the gender of the beer drinker

| sex\beer | White | Regular | Dark | Total |
|----------|-------|---------|------|-------|
| Male     | 20    | 40      | 20   | 80    |
| Female   | 30    | 30      | 10   | 70    |
| Total    | 50    | 70      | 30   | 150   |



#### Lecture 3. Linear models



### **TEST OF INDEPENDENCE**

### **Goodness of Fit for Independence Test: Example**

1. Build model assuming independence

| sex\beer | White | Regular | Dark | Tota |
|----------|-------|---------|------|------|
| Male     | 20    | 40      | 20   | 80   |
| Female   | 30    | 30      | 10   | 70   |
| Total    | 50    | 70      | 30   | 150  |
|          |       |         |      |      |

|       | White  | Regular | Dark   | Total |
|-------|--------|---------|--------|-------|
| Model | 0.3333 | 0.4667  | 0.2000 | 1     |

### 2. Transfer the model into expected frequencies, multiplying model value by number in group

| sex\beer | White | Regular | Dark  | Total |
|----------|-------|---------|-------|-------|
| Male     | 26.67 | 37.33   | 16.00 | 80    |
| Female   | 23.33 | 32.67   | 14.00 | 70    |
| Total    | 50    | 70      | 30    | 150   |

$$e_{ij} = \frac{(Row \, i \, Total)(Column \, j \, Total)}{Sample \, Size}$$

#### **3.** Build $\chi^2$ statistics



 $\chi^2$  distribution with d.f.=(n-1)(m-1), provided that the expected frequencies are 5 or more for all categories.

= CHISQ.DIST.RT(
$$\chi^2$$
, d.f.)

p-value = 
$$0.047$$
, reject H<sub>0</sub>

#### 

```
# it is simple:
chisq.test(Tab)
```

#### Lecture 3. Linear models

 $\chi^2 = 6.122$ 



### **TEST FOR CONTINUOUS DISTRIBUTIONS**

#### **Test for Normality: Example**

Chemline hires approximately 400 new employees annually for its four plants. The personnel director asks whether a normal distribution applies for the population of aptitude test scores. If such a distribution can be used, the distribution would be helpful in evaluating specific test scores; that is, scores in the upper 20%, lower 40%, and so on, could be identified quickly. Hence, we want to test the null hypothesis that the population of test scores has a normal distribution. The study will be based on 50 results.





### **TEST FOR CONTINUOUS DISTRIBUTIONS**

#### **Test for Normality: Example**





Confidence intervals for variance Hypotheses for variance Goodness of fit, test for independence ANalysis Of VAriance (ANOVA) Linear regression Logistic regression



### Why ANOVA?

Means for more than 2 populations We have measurements for 5 conditions. Are the means for these conditions equal?

### Validation of the effects

We assume that we have several factors affecting our data. Which factors are most significant? Which can be neglected?



If we would use pairwise comparisons, what will be the probability of getting error? Number of comparisons:  $C_2^5 = \frac{5!}{2!3!} = 10$ 

**Probability of an error:**  $1-(0.95)^{10} = 0.4$ 





#### Example

As part of a long-term study of individuals 65 years of age or older, sociologists and physicians at the Wentworth Medical Center in upstate New York investigated the relationship between geographic location and depression. A sample of 60 individuals, all in reasonably good health, was selected; 20 individuals were residents of Florida, 20 were residents of New York, and 20 were residents of North Carolina. Each of the individuals sampled was given a standardized test to measure depression. The data collected follow; higher test scores indicate higher levels of depression.

#### Q: Is the depression level same in all 3 locations?







Meaning

 $H_0: \mu_1 = \mu_2 = \mu_3$  $H_a:$  not all 3 means are equal





### Assumptions for ANOVA, ANOVA in R

#### **Assumptions for Analysis of Variance**

- 1. For each population, the response variable is normally distributed
- **2.** The variance of the respond variable, denoted as  $\sigma^2$  is the same for all of the populations.

**3.** The observations must be **independent**.



| # build | the | mode | el    |   |   |       |
|---------|-----|------|-------|---|---|-------|
| model = | aov | (x ~ | fact1 | + | , | data) |

```
# summary (anova table)
summary(model)
anova(model)
```

### # posthoc

TukeyHSD (model)

# check for normality
shapiro.test( residuals(model) )



#### **Some Calculations**



At the same time, we can estimate the variance just by averaging out variances for each populations:

$$\sigma^{2} = \frac{\sum_{i=1}^{k} \sigma_{i}^{2}}{k} = \frac{4.58 + 4.77 + 8.05}{3} = 5.8$$

– this is called within-treatment estimate

Does between-treatment estimate and within-treatment estimate give variances of the same "population"?





#### Lecture 3. Linear models



The Main Equation



d.f.(SST) = d.f.(SSTR) + d.f.(SSE) $n_T - 1 = (k - 1) + (n_T - k)$ 

Partitioning

The process of allocating the total sum of squares and degrees of freedom to the various components.



Example

14 Sum squares total, SST  $SST = \sum_{i=1}^{N}$  $\sum (x_{ij} - \overline{m})^2$ distances from • to – 12  $\bigcirc$ i=1 i=1 $\bigcirc$ 10 **Depression level** Sum squares due to error, SSE  $m_2$  $SSE = \sum_{j=1}^{k} (n_j - 1) s_j^2$  $\bigcirc$  $\bigcirc$ ∞*m*<sub>3</sub>• 8 ·  $\infty$  $\bigcirc \bigcirc \bigcirc$ distances from • to – m i=1 $m_1$ 6 · 0 00  $\bigcirc$ Sum squares due to treatment, SSTR 4 distances from - to - $SSTR = \sum_{j=1}^{k} n_j (m_j - \overline{m})^2$ 2 ·  $\circ$   $\circ$ i=10 -Measures

$$SST = SSTR + SSE$$



### **Example: ANOVA in R**

#### **ANOVA** table

A table used to summarize the analysis of variance computations and results. It contains columns showing the source of variation, the sum of squares, the degrees of freedom, the mean square, and the *F* value(s).

df

2

57

59

MS

39.26667

5.797368

#### In Excel use:

ANOVA

Total

 $\clubsuit$  Data  $\rightarrow$  Data Analysis  $\rightarrow$  ANOVA Single Factor

SSTR

SS

78.53333

408.9833

330.45

#### Let's perform for dataset 1: "good health"

depression2

P-value

0.002296

F

6.773188

```
str(Dep)
          # consider only healthy
          DepGH = Dep[Dep$Health ==
                       "qood",]
          # build 1-way ANOVA model
          res1 = aov(Depression ~
                    Location, DepGH)
3.158843
          summary(res1)
```

"http://edu.modas.lu/data/

# read dataset

header=T,  $sep="\t",$ 

F crit

as.is=FALSE)

Dep = **read.table**(

txt/depression2.txt",

SSE

Source of Variation

**Between Groups** 

Within Groups





#### **Post-hoc Analysis**



#### Lecture 3. Linear models



### Non-parametric (Kruskal-Wallis)

#### Kruskal-Wallis rank sum test

is a non-parametric version of 1-way ANOVA (ANOVA on ranks).

#### # non-parametric

kruskal.test(DepGH)

#### # posthoc 1

pairwise.wilcox.test(DepGH\$Depression, DepGH\$Location, p.adjust.method = "bonf")

# posthoc 2

#install.packages("dunn.test")

library(dunn.test)

dunn.test(DepGH\$Depression, DepGH\$Location)



#### **Factors and Treatments**

| <b>Factor</b><br>Another word for the indepervariable of interest. | dent Factorial experiment<br>An experimental design that allows stat<br>conclusions about two or more factors. | <pre>istical     # read dataset     Dep = read.table(     "http://edu.modas.lu/data/     txt/depression2.txt",</pre> |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| <b>Treatments</b><br>Different levels of a factor.                 | good health bad health                                                                                         | <pre>header=T,<br/>sep="\t",<br/>as.is=FALSE) str(Dep)</pre>                                                         |
| depression                                                         | Factor 1: Health<br>Florida<br>Factor 2: Location → New York<br>North Carolina                                 | <pre># build 2-way ANOVA model res2 = aov( Depression ~ Health + Location+ Health*Location, Dep) summary(res2)</pre> |
| Depression = $\mu$                                                 | + Health + Location + Health×Location + $\epsilon$                                                             | <pre># post-hoc TukeyHSD(res2)</pre>                                                                                 |

#### Interaction

The effect produced when the levels of one factor interact with the levels of another factor in influencing the response variable.

#### Lecture 3. Linear models



### 2-factor ANOVA with *r* Replicates

| Replications                            | a = number of levels of factor A                                          |
|-----------------------------------------|---------------------------------------------------------------------------|
| The number of times each experimental   | b = number of levels of factor B                                          |
| andition is repeated in an experimental | r = number of replications                                                |
| condition is repeated in an experiment. | $n_r$ = total number of observations taken in the experiment; $n_T = abr$ |

| Source<br>of Variation | Sum<br>of Squares | Degrees<br>of Freedom | Mean<br>Square                   | F           |
|------------------------|-------------------|-----------------------|----------------------------------|-------------|
| Factor A               | SSA               | <i>a</i> – 1          | $MSA = \frac{SSA}{a-1}$          | MSA<br>MSE  |
| Factor B               | SSB               | b - 1                 | $MSB = \frac{SSB}{b - 1}$        | MSB<br>MSE  |
| Interaction            | SSAB              | (a - 1)(b - 1)        | $MSAB = \frac{SSAB}{(a-1)(b-1)}$ | MSAB<br>MSE |
| Error                  | SSE               | ab(r-1)               | $MSE = \frac{SSE}{ab(r-1)}$      |             |
| Total                  | SST               | $n_T - 1$             |                                  |             |



#### Example

| Df Sum Sq Mean Sq F value Pr(>F)                              | Tukey multiple comparisons of means                                         |
|---------------------------------------------------------------|-----------------------------------------------------------------------------|
| Health 1 1748.0 1748.0 203.094 <2e-16 ***                     | 95% family-wise confidence level                                            |
| Location 2 73.9 36.9 4.290 0.016 *                            |                                                                             |
| Health:Location 2 26.1 13.1 1.517 0.224                       | Fit: aov(formula = Depression ~ Health + Location + Health * Location,      |
| Residuals 114 981.2 8.6                                       | data = Dep)                                                                 |
|                                                               |                                                                             |
| Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 | \$Health                                                                    |
|                                                               | diff lwr uprpadj                                                            |
|                                                               | good-bad -7.633333 -8.694414 -6.572252 0                                    |
|                                                               | \$Location                                                                  |
|                                                               | diff lwr upr padj                                                           |
| # check normality                                             | New York-Florida 1.850 0.2921599 3.4078401 0.0155179                        |
| # CHECK HOIMAILLY                                             | North Carolina-Florida 0.475 -1.0828401 2.0328401 0.7497611                 |
| shapiro.test( residuals(model) )                              | North Carolina-New York -1.375 -2.9328401 0.1828401 0.0951631               |
|                                                               |                                                                             |
|                                                               | <pre>\$`Health:Location`</pre>                                              |
|                                                               | diff lwr upr padj                                                           |
|                                                               | good:Florida-bad:Florida -8.95 -11.6393115 -6.260689 0.0000000              |
|                                                               | bad:New York-bad:Florida 0.90 -1.7893115 3.589311 0.9264595                 |
|                                                               | good:New York-bad:Florida -6.15 -8.8393115 -3.460689 0.0000000              |
|                                                               | bad:North Carolina-bad:Florida -0.55 -3.2393115 2.139311 0.9913348          |
|                                                               | good:North Carolina-bad:Florida -7.45 -10.1393115 -4.760689 0.0000000       |
|                                                               | bad:New York-good:Florida 9.85 7.1606885 12.539311 0.0000000                |
|                                                               | good:New York-good:Florida 2.80 0.1106885 5.489311 0.0361494                |
|                                                               | bad:North Carolina-good:Florida 8.40 5.7106885 11.089311 0.0000000          |
|                                                               | good:North Carolina-good:Florida 1.50 -1.1893115 4.189311 0.5892328         |
|                                                               | good:New York-bad:New York -7.05 -9.7393115 -4.360689 0.0000000             |
|                                                               | bad:North Carolina-bad:New York -1.45 -4.1393115 1.239311 0.6244461         |
|                                                               | good:North Carolina-bad:New York -8.35 -11.0393115 -5.660689 0.0000000      |
|                                                               | bad:North Carolina-good:New York 5.60 2.9106885 8.289311 0.0000003          |
|                                                               | good:North Carolina-good:New York -1.30 -3.9893115 1.389311 0.7262066       |
|                                                               | good:North Carolina-bad:North Carolina -6.90 -9.5893115 -4.210689 0.0000000 |



### Example & Effect size

|     |         |          | ANO      | VA         |        |                  |         |           |         |      |                   |                                        |          |
|-----|---------|----------|----------|------------|--------|------------------|---------|-----------|---------|------|-------------------|----------------------------------------|----------|
|     |         |          | Sour     | rce of Var | iation | S                | S       | df        | MS      |      | F                 | P-value                                | F crit   |
|     | Health  |          | Sam      | ple        |        | 1748             | 3.033   | 1         | 1748.0  | 33   | 203.094           | 4.4E-27                                | 3.92433  |
|     | Locati  | on       | Colu     | mns        |        | 7                | 3.85    | 2         | 36.9    | 25 4 | .290104           | 0.015981                               | 3.075853 |
|     | Interac | ction    | Inter    | action     |        | 26.1             | 1667    | 2         | 13.058  | 33 1 | .517173           | 0.223726                               | 3.075853 |
|     | Error   |          | With     | in         |        | ç                | 81.2    | 114       | 8.6070  | 18   |                   |                                        |          |
|     |         |          | Tota     | l          |        | 28               | 329.2   | 119       |         |      |                   |                                        |          |
|     |         |          |          |            | η² or  | R <sup>2</sup> = | SSx / S | ST        |         | f :  | = sqrt( R         | R <sup>2</sup> / (1-R <sup>2</sup> ) ) |          |
|     |         | F statis | tics     |            |        |                  | R2      | 2         |         |      |                   | Cohen's f                              |          |
| 250 |         | statist  | ics rela | ated to    | 0.7    | 0.62             | portic  | on of vai | riation | 1.4  | <sup>1.27</sup> C | ohen's es                              | timation |
| 200 | 203.09  | sic      | nificar  |            | 0.6    |                  | explai  | ned by t  | factors | 1.2  |                   | of effect                              | sizo     |
| 200 |         | 516      | mear     |            | 0.5    |                  | •       | •         |         | 1    | _                 | or chect                               | 3120     |
| 150 | _       |          |          |            | 0.4    |                  |         |           | 0.35    | 0.8  | _                 |                                        | 0.73     |
| 100 | _       |          |          |            | 0.3    |                  |         |           | _       | 0.6  | _                 |                                        |          |
|     |         |          |          |            | 0.2    |                  |         |           |         | 0.4  | _                 |                                        |          |
| 50  | _       |          |          |            | 0.1    |                  | 0.00    |           |         | 0.2  |                   | 0.16                                   |          |
| 0   |         | 4.29     | 1.52     | 1.00       | 0      |                  | 0.03    | 0.01      |         | 0    |                   |                                        |          |
|     | ealth   | ntion    | ction    | irror      |        | alth             | ition   | tion      | irror   |      | ealth             | tion                                   | irror    |
|     | Ť       | Loca     | Interac  |            |        | Η̈́              | Loca    | Interac   |         |      | Ť                 | Loca<br>Interac                        | u .      |



#### Example 2

| Salary/week | Occupation        | Gender |
|-------------|-------------------|--------|
| 872         | Financial Manager | Male   |
| 859         | Financial Manager | Male   |
| 1028        | Financial Manager | Male   |
| 1117        | Financial Manager | Male   |
| 1019        | Financial Manager | Male   |
| 519         | Financial Manager | Female |
| 702         | Financial Manager | Female |
| 805         | Financial Manager | Female |
| 558         | Financial Manager | Female |
| 591         | Financial Manager | Female |

salaries

**Q:** Which factors have significant effect on the salary

```
# read dataset
Sal = read.table(
"http://edu.modas.lu/data/txt/salaries.txt",
    header=T,sep="\t",as.is=FALSE)
str(Sal)
# build 2-way ANOVA model
mod = aov(Salary.week ~
    Occupation + Gender + Occupation*Gender, Sal)
summary(mod)
# post-hoc
TukeyHSD(mod)
```

| Sourceof Variation | SS     | df | MS      | F      | P-value  | F crit  |
|--------------------|--------|----|---------|--------|----------|---------|
| Sample             | 221880 | 1  | 221880  | 21.254 | 0.000112 | 4.25968 |
| Columns            | 276560 | 2  | 138280  | 13.246 | 0.000133 | 3.40283 |
| Interaction        | 115440 | 2  | 57720   | 5.5289 | 0.010595 | 3.40283 |
| Within             | 250552 | 24 | 10439.7 |        |          |         |
|                    |        |    |         |        |          |         |
| Итого              | 864432 | 29 |         |        |          |         |



### Example 2

| Df Sum Sq Mean Sq F value         Pr(>F)           Occupation         2 276560         138280         13.246         0.000133         ***           Gender         1 221880         221880         21 254         0.000112         *** | Tukey multiple comparisons of means<br>95% family-wise confidence level |                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------|
| Occupation:Gender 2 115440 57720 5.529 0.010595 *                                                                                                                                                                                      | Fit: aov(formula = Salary.week ~ Occupation + Gender                    | + Occupation * Gender, data = Sal)                       |
| Residuals 24 250552 10440                                                                                                                                                                                                              |                                                                         |                                                          |
|                                                                                                                                                                                                                                        | \$Occupation                                                            |                                                          |
| Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1                                                                                                                                                                          | diff lwr                                                                | upr padj                                                 |
|                                                                                                                                                                                                                                        | Financial Manager-Computer Programmer 38 -76.11081                      | 152.1108 0.6874260                                       |
|                                                                                                                                                                                                                                        | Pharmacist-Computer Programmer 220 105.88919                            | 334.1108 0.0001903                                       |
|                                                                                                                                                                                                                                        | Pharmacist-Financial Manager 182 67.88919                               | 296.1108 0.0015387                                       |
|                                                                                                                                                                                                                                        | SGender                                                                 |                                                          |
|                                                                                                                                                                                                                                        | diff lwr upr padj                                                       |                                                          |
|                                                                                                                                                                                                                                        | Male-Female 172 94.99818 249.0018 0.0001119                             |                                                          |
|                                                                                                                                                                                                                                        |                                                                         |                                                          |
|                                                                                                                                                                                                                                        | <pre>\$`Occupation:Gender`</pre>                                        |                                                          |
|                                                                                                                                                                                                                                        | C C                                                                     | diff lwr upr padj                                        |
|                                                                                                                                                                                                                                        | Financial Manager:Female-Computer Programmer:Female ·                   | -106 -305.80351 93.80351 0.5814961                       |
|                                                                                                                                                                                                                                        | Pharmacist:Female-Computer Programmer:Female                            | 190 -9.80351 389.80351 0.0689592                         |
|                                                                                                                                                                                                                                        | Computer Programmer:Male-Computer Programmer:Female                     | 56 -143.80351 255.80351 0.9508750                        |
|                                                                                                                                                                                                                                        | Financial Manager:Male-Computer Programmer:Female                       | 238 38.19649 437.80351 0.0131635                         |
|                                                                                                                                                                                                                                        | Pharmacist:Male-Computer Programmer:Female                              | 306 106.19649 505.80351 0.0010255                        |
|                                                                                                                                                                                                                                        | Pharmacist:Female-Financial Manager:Female                              | 296         96.19649         495.80351         0.0015025 |
|                                                                                                                                                                                                                                        | Computer Programmer:Male-Financial Manager:Female                       | 162 -37.80351 361.80351 0.1616324                        |
|                                                                                                                                                                                                                                        | Financial Manager:Male-Financial Manager:Female                         | 344 144.19649 543.80351 0.0002396                        |
|                                                                                                                                                                                                                                        | Pharmacist:Male-Financial Manager:Female                                | 412 212.19649 611.80351 0.0000185                        |
|                                                                                                                                                                                                                                        | Computer Programmer:Male-Pharmacist:Female                              | -134 -333.80351 65.80351 0.3334443                       |
|                                                                                                                                                                                                                                        | Financial Manager:Male-Pharmacist:Female                                | 48 -151.80351 247.80351 0.9743050                        |
|                                                                                                                                                                                                                                        | Pharmacist:Male-Pharmacist:Female                                       | 116 -83.80351 315.80351 0.4872344                        |
|                                                                                                                                                                                                                                        | Financial Manager:Male-Computer Programmer:Male                         | 182 -17.80351 381.80351 0.0889147                        |
|                                                                                                                                                                                                                                        | Pharmacist:Male-Computer Programmer:Male                                | 250 50.19649 449.80351 0.0084855                         |
|                                                                                                                                                                                                                                        | Pharmacist:Male-Financial Manager:Male                                  | 68 -131.80351 267.80351 0.8950589                        |



**Experiments** 

#### Aware of Batch Effect !

When designing your experiment always remember about various factors which can effect your data: batch effect, personal effect, lab effect...





**Experiments** 

**Completely randomized design** An experimental design in which the treatments are randomly assigned to the experimental units.



We can nicely randomize:

**Day effect** 

**Batch effect** 



**Experiments** 

#### Blocking

The process of using the same or similar experimental units for all treatments. The purpose of blocking is to remove a source of variation from the error term and hence provide a more powerful test for a difference in population or treatment means.





Day 2



**Experiments** 

A good suggestion... ③

**Block** what you can block, **randomize** what you cannot, and try to **avoid** unnecessary factors



### ANOVA

Task



**Q:** Does mouse strain affect the weight (e.g. Starting weight)? Show the effects of **sex** and **strain** using ANOVA

|          | 129S1/SvImJ A/J | 1    | AKR/J | BALB/cByJE | BTBR_T+_ | BUB/BnJ | C3H/HeJ |
|----------|-----------------|------|-------|------------|----------|---------|---------|
| 1 Female | 20.5            | 23.2 | 24.6  | 22.8       | 28       | 27.1    | 21.4    |
| 2        | 20.8            | 22.4 | 26    | 23.5       | 25.8     | 24.1    | 28.2    |
| 3        | 19.8            | 22.7 | 31    | 23.8       | 26       | 25.9    | 23.5    |
| 4        | 21              | 21.4 | 25.7  | 22.7       | 26.5     | 25.9    | 23.9    |
| 5        | 21.9            | 22.6 | 23.7  | 19.7       | 26.3     | 26      | 22.8    |
| 6        | 22.1            | 20   | 21.1  | 26.2       | 27       | 27.1    | 18.4    |
| 7        | 21.3            | 21.8 | 23.7  | 24.1       | 26       | 26.2    | 21.8    |
| 8        | 20.1            | 20.8 | 24.5  | 23.5       | 28.8     | 27.5    | 25      |
| 9        | 18.9            | 19.5 | 32.3  | 23.8       | 28       | 30.2    | 20.1    |
| 10 Male  | 24.7            | 25.8 | 42.8  | 29.3       | 34.1     | 36.2    | 31.2    |
| 11       | 27.2            | 27.7 | 32.6  | 32.2       | 33       | 36.9    | 28.2    |
| 12       | 23.9            | 29.9 | 34.8  | 29.7       | 38.7     | 34.4    | 26.7    |
| 13       | 26.3            | 24.8 | 32.8  | 30         | 39       | 34.3    | 29.3    |
| 14       | 26              | 22.9 | 34.8  | 27         | 31       | 31.7    | 33.1    |
| 15       | 23.3            | 24.5 | 32.8  | 30         | 32       | 33      | 28.2    |
| 16       | 26.5            | 24.6 | 33.6  | 33.1       | 33.7     | 33.2    | 31.2    |
| 17       | 27.4            | 21.6 | 30.7  | 30.6       | 33.1     | 34      | 27.7    |
| 18       | 27.5            | 26.9 | 36.5  | 28.7       | 32.5     | 31      | 27.5    |



Confidence intervals for variance Hypotheses for variance Goodness of fit, test for independence ANalysis Of VAriance (ANOVA) Linear regression Logistic regression



#### Example



#### **Dependent variable**

The variable that is being predicted or explained. It is denoted by y.

#### **Independent variable**

The variable that is doing the predicting or explaining. It is denoted by **x**.



### **Regression Model and Regression Line**

#### **Simple linear regression**

Regression analysis involving one independent variable and one dependent variable in which the relationship between the variables is approximated by a straight line.

• Building a *regression* means finding and tuning the model to explain the behaviour of the data





### **Regression Model and Regression Line**

#### **Regression model**

The equation describing how y is related to x and an error term; in simple linear regression, the regression model is  $y = \beta_0 + \beta_1 x + \varepsilon$ 

#### **Regression equation**

The equation that describes how the mean or expected value of the dependent variable is related to the independent variable; in simple linear regression,

 $\mathsf{E}(\mathbf{y}) = \beta_0 + \beta_1 \mathbf{x}$ 



Model for a simple linear regression:

$$y(x) = \beta_1 x + \beta_0 + \varepsilon$$



### **Regression Model and Regression Line**

$$y(x) = \beta_1 x + \beta_0 + \varepsilon$$





#### **Estimated regression equation**

#### **Estimated regression equation**

The estimate of the regression equation developed from sample data by using the least squares method. For simple linear regression, the estimated regression equation is  $y = b_0 + b_1 x$ 

$$y(x) = \beta_1 x + \beta_0 + \varepsilon$$
$$\mathbf{\hat{y}}(x) = b_1 x + b_0$$

cells



plot(Cells, pch=19)
abline(lm(Cell.Number ~ Temperature, Cells),col=2, lwd=2)
# add smooth curve (loess/lowess) (just fun)
lines(lowess(Cells\$Temperature, Cells\$Cell.Number),lty=2)





### LINEAR REGRESSION

### Assumptions



- **1.** The error term  $\boldsymbol{\varepsilon}$  is a random variable with 0 mean, i.e.  $E[\varepsilon]=0$
- **2.** The variance of  $\boldsymbol{\varepsilon}$ , denoted by  $\boldsymbol{\sigma}^2$ , is the same for all values of x
- **3.** The values of  $\boldsymbol{\varepsilon}$  are independent
- 3. The term  $\boldsymbol{\varepsilon}$  is a normally distributed variable





#### Lecture 3. Linear models



#### **Exact calculation for the simplest case**

Least squares method

A procedure used to develop the estimated regression equation.

The objective is to minimize  $\sum (y_i - \hat{y}_i)^2$ 

 $y_i$  = observed value of the dependent variable for the *i*th observation  $\hat{y}_i$  = estimated value of the dependent variable for the *i*th observation

Slope:

$$b_1 = \frac{\sum (x_i - m_x)(y_i - m_y)}{(x_1 - m_x)^2}$$

Intersect: 
$$b_0 = m_y - b_1 m_y$$



#### The Main Equation



**The Main Equation** 

$$SST = SSR + SSE$$



#### **ANOVA and Regression**

450



$$\begin{array}{c} 400 \\ 350 \\ 300 \\ 250 \\ 250 \\ 200 \\ 150 \\ 100 \\ 50 \\ 0 \\ 15 \\ 20 \\ 25 \\ 30 \\ 35 \\ 40 \\ 45 \\ Temperature \\ \end{array}$$

$$SST = SSR + SSE$$

$$SST = SSTR + SSE$$



### **Coefficient of Determination**



#### **Correlation coefficient**

A measure of the strength of the linear relationship between two variables (previously discussed in Lecture 1).



40

45

SSE

<u>SST</u>



**NOTE:** There is a non-obvious case when  $R^2 < 0$ . It means that the model is worse than the mean value



### **TESTING FOR SIGNIFICANCE**

Estimation of  $\sigma^2$ 

#### *i*-th residual

The difference between the observed value of the dependent variable and the value predicted using the estimated regression equation; for the *i*-th observation the *i*-th residual is:  $y_i - \hat{y}_i$ 

#### Mean square error

The unbiased estimate of the variance of the error term  $\sigma^2$ . It is denoted by MSE or  $s^2$ . Standard error of the estimate: the square root of the mean square error, denoted by *s*. It is the estimate of  $\sigma$ , the standard deviation of the error term  $\varepsilon$ .





### **TESTING FOR SIGNIFICANCE**

### Sampling Distribution for $b_1$

If assumptions for  $\epsilon$  are fulfilled, then the sampling distribution for  $b_1$  is as follows:

$$y(x) = \beta_1 x + \beta_0 + \varepsilon$$
$$\hat{y}(x) = b_1 x + b_0$$

Expected value

St.deviatiation



= Standard Error  $\sqrt{\sum (x_i - m_x)^2}$ 

**Distribution:** 

normal

 $\sigma_{b_1}$  = -

### Interval Estimation for $\beta_1$

$$\beta_1 = b_1 \pm t_{\alpha/2}^{(n-2)} \frac{\sigma}{\sqrt{\sum (x_i - m_x)^2}}$$



### **TESTING FOR SIGNIFICANCE**

### **2** Ways to Test for Significance

$$H_0$$
:  $β_1 = 0$  insignificant  
 $H_a$ :  $β_1 ≠ 0$ 

1. Build a t-test statistics.





2. Calculate a p-value

2. Calculate p-value for t

p-value approach:Reject  $H_0$  if p-value  $\leq \alpha$ Critical value approach:Reject  $H_0$  if  $t \leq -t_{a/2}$  or if  $t \geq t_{a/2}$ 

where  $t_{\alpha/2}$  is based on a t distribution with n-2 degrees of freedom.



cells

= INTERCEPT(y, x)

### **REGRESSION ANALYSIS**

#### Example

In R you should run the complete analysis:

model=lm(Cell.Number~Temperature, data=Cells)

| SUMMARY OUTPL     | JT           |                |           |          |                |            |             |             | <pre># Regression ta summary(model)</pre> |
|-------------------|--------------|----------------|-----------|----------|----------------|------------|-------------|-------------|-------------------------------------------|
|                   |              |                |           |          |                |            |             |             | Summary (moder)                           |
| Regression Si     | tatistics    |                |           |          |                |            |             |             |                                           |
| Multiple R        | 0.95091908   |                |           |          |                |            |             |             | # ANOVA table                             |
| R Square          | 0.9042471    |                |           |          |                |            |             |             | anova(model)                              |
| Adjusted R Square | 0.89920747   |                |           |          |                |            |             |             |                                           |
| Standard Error    | 31.7623796   |                |           |          |                |            |             |             | # intercent/slo                           |
| Observations      | 21           |                |           |          |                |            |             |             |                                           |
|                   |              |                |           |          |                |            |             |             | model\$coefficie                          |
| ANOVA             |              |                |           |          |                |            |             |             |                                           |
|                   | df           | SS             | MS        | F        | Significance F |            |             |             |                                           |
| Regression        | 1            | 181015.1117    | 181015.11 | 179.4274 | 3.95809E-11    |            |             |             |                                           |
| Residual          | 19           | 19168.12641    | 1008.8488 |          |                |            |             |             |                                           |
| Total             | 20           | 200183.2381    |           |          |                |            |             |             |                                           |
|                   | Coefficients | Standard Error | t Stat    | P-value. | Lower 95%      | Upper 95%  | Lower 95 0% | Upper 95.0% |                                           |
| Intercept         | -190,783550  | 35.031618      | -5.446039 | 2.96E-05 | -264.10557     | -117.46153 | -264.10557  | -117.46153  |                                           |
| Temperature       | 15.332468    | 1.144637       | 13.395051 | 3.96E-11 | 12.93671537    | 17.7282197 | 12.93671537 | 17.7282197  |                                           |

Lecture 3. Linear models



#### **Confidence and Prediction**

#### **Confidence interval**

The interval estimate of the mean value of y for a given value of x.

#### **Prediction interval**

The interval estimate of an individual value of y for a given value of x.





Example





Х



**Residuals** 





Task

rana

A biology student wishes to determine the relationship between temperature and heart rate in leopard frog, *Rana pipiens*. He manipulates the temperature in 2° increment ranging from 2 to 18°C and records the heart rate at each interval. His data are presented in table rana.txt

- 1) Build the model and provide the p-value for linear dependency
- 2) Provide interval estimation for the slope of the dependency
- 3) Estimate 95% prediction interval for heart rate at  $15^{\circ}$



#### **Multiple Regression**





#### **Multiple Regression**





### **MULTIPLE REGRESSION**

#### **Example: swiss dataset**

swiss

Often one variable is not enough, and we need several independent variables to predict dependent one. Let's consider R internal swiss dataset: standardized fertility measure and socio-economic indicators for 47 French-speaking provinces of Switzerland at about 1888. See **?swiss** 

| ## | 'data.frame': 4               | 7 obs. | of 6 variables:                                   |
|----|-------------------------------|--------|---------------------------------------------------|
| ## | \$ Fertility                  | : num  | 80.2 83.1 92.5 85.8 76.9 76.1 83.8 92.4 82.4 82.9 |
| ## | \$ Agriculture                | : num  | 17 45.1 39.7 36.5 43.5 35.3 70.2 67.8 53.3 45.2   |
| ## | \$ Examination                | : int  | 15 6 5 12 17 9 16 14 12 16                        |
| ## | \$ Education                  | : int  | 12 9 5 7 15 7 7 8 7 13                            |
| ## | \$ Catholic                   | : num  | 9.96 84.84 93.4 33.77 5.16                        |
| ## | <pre>\$ Infant.Mortalit</pre> | y: num | 22.2 22.2 20.2 20.3 20.6 26.6 23.6 24.9 21 24.4   |

```
#install.packages("PerformanceAnalytics")
library(PerformanceAnalytics)
chart.Correlation(swiss)
modAll = lm(Fertility ~ . , data = swiss)
summary(modAll)
plot(swiss$Fertility, predict(modAll,swiss),xlab="Real
Fertility",ylab="Predicted Fertility",pch=19)
abline(a=0,b=1,col=2,lty=2)
```

Check further analysis in the HTML...



### **MULTIPLE REGRESSION**

### Recommendations

swiss

- Check whether your linear model is adequate (visualize residual, draw **lowess** curve)
- Check the significance of the variables
- Check and try to avoid correlated variables
- If you need to choose optimal variables:
  - $\circ$  maximize R<sup>2</sup>
  - minimize information criteria: <u>BIC</u> and <u>AIC</u>
- > Add / remove variable and compare models using likelihood ratio or chi2 test.
  - anova(modAll, modSig)



#### **Logistic Regression**

Example:

#### **FIGURE 15.12** LOGISTIC REGRESSION EQUATION FOR $\beta_0 = -7$ AND $\beta_1 = 3$



$$E(y) = P(y = 1 | x_1, x_2, \dots, x_p) = \frac{\exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p)}{1 + \exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p)}$$

in R: glm(..., family="binomial")

```
family = "binomial")
```

summary(model)

http://edu.modas.lu/modas\_pm/part2.html

To be continued in Lecture 4...





# Thank you for your attention

