Multiomics Data Science Group (MODAS)
Department of Cancer Research, LIH
Bioinformatics Platform (BIOINFO)
Department of Medical Informatics, LIH

BIOSTATISTICS for PhDs

Lecture 3

Linear Models

Peter Nazarov

Email: petr.nazarov@lih.lu
Skype: pvn.public

Lecture 1, 2024-02-05

- numerical measures (location/variability/association), parametric/nonparametric
- basic summary and visualization in R: barplot, boxplot, scatter plot
z-score, detection of outliers
- continuous distributions (normal, Student, $\chi^{2}, ~ F$), linkage to probability
- sampling distribution, methods for sampling
- Lecture 2, 2024-02-19
\rightarrow interval estimations for mean and proportion
- hypotheses testing for mean(s), p-value, tails
- number of samples
- power of a test
- non-parametric tests
- multiple comparisons

Let's work at a comfortable speed!

Materials and other courses:
http://edu.modas.lu

Lecture 3, 2024-03-04

\rightarrow interval estimations and hypotheses for variance
\rightarrow model fitting and test for independence

- linear models, ANOVA, posthoc analysis
\rightarrow simple and multiple linear regression
- Lecture 4, 2024-04-08 (please, propose!)
- factors in linear regression
- logistic regression
- omics data analysis?
survival analysis?
- clustering?
more practical exercise?

R Studio

https://posit.co/downloads/

HYPOTHESES FOR VARIANCE

Confidence intervals for variance
Hypotheses for variance
Goodness of fit, test for independence
ANalysis Of VAriance (ANOVA)
Linear regression
Logistic regression

INTERVAL ESTIMATION FOR VARIANCE

Variance Sampling Distribution

Variance

A measure of variability based on the squared deviations of the data values about the mean.

$$
\text { population } \sigma^{2}=\frac{\sum\left(x_{i}-\mu\right)^{2}}{N}
$$

sample

$$
s^{2}=\frac{\sum\left(x_{i}-m\right)^{2}}{n-1}
$$

The interval estimation for variance is build using the following measure:

Sampling distribution of $(n-1) s^{2} / \sigma^{2}$

Whenever a simple random sample of size n is selected from a normal population, the sampling distribution of $(n-1) s^{2} / \sigma^{2}$ has a chi-square distribution $\left(\chi^{2}\right)$ with n - 1 degrees of freedom.

$$
(n-1) \frac{s^{2}}{\sigma^{2}}
$$

$$
(n-1) \frac{s^{2}}{\sigma^{2}}=\chi_{d f=n-1}^{2}
$$

INTERVAL ESTIMATION FOR VARIANCE

LUXEMBOURG INSTITUTE OF HEALTH

INTERVAL ESTIMATION FOR VARIANCE

χ^{2} Probabilities in Table and Excel

Left tailed (standard) Right tailed (RT)

Degrees of Freedom	Area in Upper Tail							
	. 99	. 975	. 95	. 90	. 10	. 05	. 025	. 01
1	. 000	. 001	. 004	. 016	2.706	3.841	5.024	6.635
2	. 020	. 051	. 103	. 211	4.605	5.991	7.378	9.210
3	. 115	. 216	. 352	. 584	6.251	7.815	9.348	11.345
4	. 297	. 484	.711	1.064	7.779	9.488	11.143	13.277
5	. 554	. 831	1.145	1.610	9.236	11.070	12.832	15.086
6	. 872	1.237	1.635	2.204	10.645	12.592	14.449	16.812
7	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475
8	1.647	2.180	2.733	3.490	13.362	15.507	17.535	20.090
9	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666
10	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209
11	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725
12	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217
13	4.107	5.009	5.892	7.041	19.812	22.362	24.736	27.688
14	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141
15	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578
16	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000
17	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409
18	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805
19	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191

INTERVAL ESTIMATION FOR VARIANCE

χ^{2} Distribution for Interval Estimation

$$
\chi^{2}=(n-1) \frac{s^{2}}{\sigma^{2}}
$$

qchisq(0.025,19)
qchisq(0.025,19)
qchisq(0.975,19)
qchisq(0.975,19)

INTERVAL ESTIMATION FOR VARIANCE

Interval Estimation

Suppose sample of $n \equiv 36$ coffee cans is selected and $m=2.92$ and $s=0.18 \mathrm{lbm}$ is observed. Provide 95\% confidence interval for the standard deviation

$$
\begin{aligned}
\frac{(36-1) 0.18^{2}}{53.203} \leq \sigma^{2} \leq \frac{(36-1) 0.18^{2}}{20.569} \quad & =\operatorname{CHISQ} \cdot \operatorname{INV}(\alpha / 2, \mathrm{n}-1) \\
& =\operatorname{CHISQ} \cdot \operatorname{INV} \cdot \operatorname{RT}(\alpha / 2, \mathrm{n}-1)
\end{aligned}
$$

$$
\text { qchisq(} 0.025,36-1 \text {) }
$$

$$
\text { qchisq }(1-0.025,36-1)
$$

INTERVAL ESTIMATION FOR VARIANCE

Hypotheses about Population Variance

$\begin{aligned} & H_{0}: \sigma^{2} \leq \text { const } \\ & H_{\mathrm{a}}: \sigma^{2}>\mathrm{const} \end{aligned}$	$\begin{aligned} & H_{0}: \sigma^{2} \geq \text { const } \\ & H_{a}: \sigma^{2}<\text { const } \end{aligned}$		$\begin{aligned} & H_{0}: \sigma^{2}=\text { const } \\ & H_{a}: \sigma^{2} \neq \text { const } \end{aligned}$
		X	!
	Lower Tail Test	Upper Tail Test	Two-Tailed Test
Hypotheses	$\begin{aligned} & H_{0}: \sigma^{2} \geq \sigma_{0}^{2} \\ & H_{a}: \sigma^{2}<\sigma_{0}^{2} \end{aligned}$	$\begin{aligned} & H_{0}: \sigma^{2} \leq \sigma_{0}^{2} \\ & H_{a}: \sigma^{2}>\sigma_{0}^{2} \end{aligned}$	$\begin{aligned} & H_{0}: \sigma^{2}=\sigma_{0}^{2} \\ & H_{a}: \sigma^{2} \neq \sigma_{0}^{2} \end{aligned}$
Test Statistic	$\chi^{2}=\frac{(n-1) s^{2}}{\sigma_{0}^{2}}$	$\chi^{2}=\frac{(n-1) s^{2}}{\sigma_{0}^{2}}$	$\chi^{2}=\frac{(n-1) s^{2}}{\sigma_{0}^{2}}$
Rejection Rule: p-Value Approach	Reject H_{0} if p-value $\leq \alpha$	Reject H_{0} if p-value $\leq \alpha$	Reject H_{0} if p-value $\leq \alpha$
Rejection Rule: Critical Value Approach	$\begin{gathered} \text { Reject } \mathrm{H}_{0} \text { if } \\ \chi^{2} \leq \chi_{(1-\alpha)}^{2} \end{gathered}$	$\begin{gathered} \text { Reject } \mathrm{H}_{0} \text { if } \\ \chi^{2} \geq \chi_{\alpha}^{2} \end{gathered}$	$\begin{gathered} \text { Reject } \mathrm{H}_{0} \text { if } \\ \chi^{2} \leq \chi_{(1-\alpha / 2)}^{2} \text { or if } \chi^{2} \geq \chi_{\alpha / 2}^{2} \end{gathered}$

VARIANCES OF TWO POPULATIONS

Sampling Distribution

In many statistical applications we need a comparison between variances of two populations. In fact well-known ANOVA-method is base on this comparison.
The statistics is build for the following measure:

$$
F=\frac{s_{1}^{2}}{s_{2}^{2}}
$$

Distributions

```
pf(x,df1,df2,...)
qf(p,df1,df2,...)
```

```
= F.DIST(x, df1,
```

= F.DIST(x, df1,
df2,TRUE)
df2,TRUE)
= F.INV(p, df1,
= F.INV(p, df1,
df2,TRUE)

```
    df2,TRUE)
```

Sampling distribution of $s_{1}{ }^{2} / s_{2}{ }^{2}$ when $\sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}$

Whenever a independent simple random samples of size n_{1} and n_{2} are selected from two normal populations with equal variances, the sampling of $s_{1}{ }^{2} / s_{2}{ }^{2}$ has F-distribution with $n_{1}-1$ degree of freedom for numerator and $n_{2}-1$ for denominator.

F-distribution for 20 d.f. in numerator and 20 d.f. in denominator

Tests

```
= F.TEST(data1,data2)
```

var.test(data1,data2)

VARIANCES OF TWO POPULATIONS

Tests

```
= F.TEST(data1,data2)
```

var.test(data1,data2)

VARIANCES OF TWO POPULATIONS

Example

schoolbus

\#	Milbank	Gulf Park
1	35.9	21.6
2	29.9	20.5
3	31.2	23.3
4	16.2	18.8
5	19.0	17.2
6	15.9	7.7
7	18.8	18.6
8	22.2	18.7
9	19.9	20.4
10	16.4	22.4
11	5.0	23.1
12	25.4	19.8
13	14.7	26.0
14	22.7	17.1
15	18.0	27.9
16	28.1	20.8
17	12.1	
18	21.4	
19	13.4	
20	22.9	
21	21.0	
22	10.1	
23	23.0	
24	19.4	
25	15.2	
26	28.2	

Dullus County Schools is renewing its school bus service contract for the coming year and must select one of two bus companies, the Milbank Company or the Gulf Park Company. We will use the variance of the arrival or pickup/delivery times as a primary measure of the quality of the bus service. Low variance values indicate the more consistent and higherquality service. If the variances of arrival times associated with the two services are equal, Dullus School administrators will select the company offering the better financial terms However, if the sample data on bus arrival times for the two companies indicate a significant difference between the variances, the administrators may want to give special consideratuon to the company with the better or lower variance service. The appropriate hypotheses follon

$$
\begin{aligned}
& H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2} \\
& H_{\mathrm{a}}: \sigma_{1}^{2} \neq \sigma_{2}^{2}
\end{aligned}
$$

If H_{0} can be rejected, the conclusion of unequal service quality is appropriate. We will ast a level of significance of $\alpha=.10$ to conduct the hypothesis test.

LUXEMBOURG INSTITUTE OF HEALTH

VARIANCES OF TWO POPULATIONS

Example

schoolbus

\#		Milbank
1	Gulf Park	
2	25.9	21.6
3	31.2	20.5
4	16.2	23.3
5	19.0	17.2
6	15.9	7.7
7	18.8	18.6
8	22.2	18.7
9	19.9	20.4
10	16.4	22.4
11	5.0	23.1
12	25.4	19.8
13	14.7	26.0
14	22.7	17.1
15	18.0	27.9
16	28.1	20.8
17	12.1	
18	21.4	
19	13.4	
20	22.9	
21	21.0	
22	10.1	
23	23.0	
24	19.4	
25	15.2	
26	28.2	

1. Let us start from estimation of the variances for 2 data sets

Milbank: $s_{1}{ }^{2}=48, \quad n_{1}=26$
Gulf Park: $s_{2}{ }^{2}=20, n_{2}=16$
2. Let us calculate the F-statistics

$$
F=\frac{s_{1}^{2}}{s_{2}^{2}}=\frac{48}{20}=2.40
$$

3. \ldots and p-value $=0.08$

$$
p \text {-value }=0.08<\alpha=0.1
$$

interval estimation (optionally)
Milbank: $\quad \sigma_{1}{ }^{2} \approx 48(29.5 \div 91.5)$
Gulf Park: $\sigma_{2}{ }^{2} \approx 20$ (10.9 $\div 47.9$)

[^0]
HYPOTHESES FOR VARIANCE

Confidence intervals for variance
Hypotheses for variance
Goodness of fit, test for independence
ANalysis Of VAriance (ANOVA)
Linear regression
Logistic regression

LUXEMBOURG INSTITUTE OF HEALTH

TEST OF GOODNESS OF FIT

Multinomial Population

Multinomial population

A population in which each element is assigned to one and only one of several categories. The multinomial distribution extends the binomial distribution from two to three or more outcomes.

Contingency table $=$ Crosstabulation Contingency tables or crosstabulations are used to record, summarize and analyze the relationship between two or more categorical (usually) variables.

The new treatment for a disease is tested on 200 patients. The outcomes are classified as:

```
A - patient is completely treated
B - disease transforms into a chronic form
C - treatment is unsuccessfull:
```

In parallel the 100 patients treated with standard methods are observed

Category	Experimental	Control
A	94	38
B	42	28
C	64	34
Sum	200	100

- The proportions for 3 "classes" of patients with and without treatment are:

TEST OF GOODNESS OF FIT

Goodness of Fit

Goodness of fit test
A statistical test conducted to determine whether to reject a hypothesized probability distribution for a population.

Model - our assumption concerning the distribution, which we would like to test.

Observed frequency - frequency distribution for experimentally observed data, \boldsymbol{f}_{i}

Expected frequency - frequency distribution, which we would expect from our model, $\boldsymbol{e}_{\boldsymbol{i}}$

Hypotheses for the test:
H_{0} : the population follows a multinomial distribution with the probabilities, specified by model
H_{a} : the population does not follow ... model

- The proportions for 3 "classes" of patients with and without treatment are:

Are the proportions significantly different in control and experimental groups?

$$
\begin{aligned}
& \text { Test statistics for } \\
& \text { goodness of fit } \\
& \chi^{2}=\sum_{i=1}^{k} \frac{\left(f_{i}-e_{i}\right)^{2}}{e_{i}}
\end{aligned}
$$

χ^{2} has $\boldsymbol{k}-1$ degree of freedom
At least 5 expected must be in each category!

TEST OF GOODNESS OF FIT

 are observed

1. Select the model and calculate expected
frequencies
Let's use control group (classical
treatment) as a model, then:

Category	Control	Model for		
frequencies	control	Expected freq., e	Experimental freq., f	
A	38	0.38	76	94
B	28	0.28	56	42
C	34	0.34	68	64
Sum	100	1	$\mathbf{2 0 0}$	200

2. Compare expected frequencies with the experimental ones and build χ^{2}

```
# input data
```


input data

Tab = cbind(c(94,42,64),
Tab = cbind(c(94,42,64),
c}(38,28,34)
c}(38,28,34)
colnames(Tab) =
colnames(Tab) =
c("exp","ctrl")
c("exp","ctrl")
rownames(Tab) =
rownames(Tab) =
c("A","B","C")
c("A","B","C")

control defines Model

mod=Tab[,2]/sum(Tab [, 2])

test Model for 'exp'

chisq.test(Tab[,1], p=mod)

```
```

| = CHISQ.DIST.RT(}\mp@subsup{\chi}{}{2},\textrm{d}.f.

```
p-value \(=0.018\), reject \(\mathrm{H}_{0}\)

\section*{TEST OF INDEPENDENCE}

\section*{Goodness of Fit for Independence Test: Example}

\begin{abstract}
Alber's Brewery manufactures and distributes three types of beer: white, regular, and dark. In an analysis of the market segments for the three beers, the firm's market research group raised the question of whether preferences for the three beers differ among male and female beer drinkers. If beer preference is independent of the gender of the beer drinker, one advertising campaign will be initiated for all of Alber's beers. However, if beer preference depends on the gender of the beer drinker, the firm will tailor its promotions to different target markets.
\end{abstract}
\(H_{0}\) : Beer preference is independent of the gender of the beer drinker
\(H_{a}\) : Beer preference is not independent of the gender of the beer drinker
\begin{tabular}{|l|ccc|c|}
\hline sex\beer & White & Regular & Dark & Total \\
\hline Male & 20 & 40 & 20 & \(\mathbf{8 0}\) \\
Female & 30 & 30 & 10 & 70 \\
\hline Total & 50 & 70 & \(\mathbf{3 0}\) & \(\mathbf{1 5 0}\) \\
\hline
\end{tabular}


\section*{TEST OF INDEPENDENCE}

Goodness of Fit for Independence Test: Example
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{1. Build model assuming independence} & sex\beer & White & Regular & Dark & Total \\
\hline & Male & 20 & 40 & 20 & 80 \\
\hline & Female & 30 & 30 & 10 & 70 \\
\hline & Total & 50 & 70 & 30 & 150 \\
\hline
\end{tabular}
\begin{tabular}{|l|lll|l|}
\hline \multirow{3}{*}{ Model } & White & Regular & Dark & Total \\
\cline { 2 - 5 } & 0.3333 & 0.4667 & 0.2000 & 1 \\
\hline
\end{tabular}
2. Transfer the model into expected frequencies, multiplying model value by number in group
\begin{tabular}{|l|ccc|c|}
\hline sex\beer & White & Regular & Dark & Total \\
\hline Male & 26.67 & 37.33 & 16.00 & \(\mathbf{8 0}\) \\
Female & 23.33 & 32.67 & 14.00 & \(\mathbf{7 0}\) \\
\hline Total & \(\mathbf{5 0}\) & \(\mathbf{7 0}\) & \(\mathbf{3 0}\) & \(\mathbf{1 5 0}\) \\
\hline
\end{tabular}
\[
e_{i j}=\frac{(\text { Row i Total })(\text { Column } j \text { Total })}{\text { Sample Size }}
\]
3. Build \(\chi^{2}\) statistics
\[
\chi^{2}=\sum_{i}^{n} \sum_{j}^{m} \frac{\left(f_{i j}-e_{i j}\right)^{2}}{e_{i j}}
\]
\(\chi^{2}\) distribution with
d.f. \(=(n-1)(m-1)\), provided that the expected frequencies are 5 or more

\section*{4. Calculate \(p\)-value}
\[
\left.\downarrow=\text { CHISQ.DIST.RT ( } \chi^{2}, \mathrm{~d} . \mathrm{f} .\right)
\]
p-value \(=0.047\), reject \(\mathbf{H}_{0}\)

\section*{TEST FOR CONTINUOUS DISTRIBUTIONS}

\section*{Test for Normality: Example}

Chemline hires approximately 400 new employees annually for its four plants. The personnel director asks whether a normal distribution applies for the population of aptitude test scores. If such a distribution can be used, the distribution would be helpful in evaluating specific test scores; that is, scores in the upper \(20 \%\), lower \(40 \%\), and so on, could be identified quickly. Hence, we want to test the null hypothesis that the population of test scores has a normal distribution. The study will be based on 50 results.


LUXEMBOURG INSTITUTE OF HEALTH

\section*{TEST FOR CONTINUOUS DISTRIBUTIONS}

Test for Normality: Example
\begin{tabular}{|lr|}
\hline \multicolumn{2}{|c|}{ Chemline } \\
\hline Mean & 68.42 \\
Standard Deviation & 10.4141 \\
Sample Variance & 108.4527 \\
Count \\
\begin{tabular}{|lcr|}
\hline \multicolumn{3}{|c|}{ Observed } \\
Bin & Expected \\
frequency & frequency \\
\hline 55.1 & 5 & 5 \\
59.68 & 5 & 5 \\
63.01 & 9 & 5 \\
65.82 & 6 & 5 \\
68.42 & 2 & 5 \\
71.02 & 5 & 5 \\
73.83 & 2 & 5 \\
77.16 & 5 & 5 \\
81.74 & 5 & 5 \\
More & 6 & 5 \\
\hline Total & \(\mathbf{5 0}\) & \(\mathbf{5 0}\) \\
\hline
\end{tabular}
\end{tabular}\(.\)\begin{tabular}{l} 
\\
\hline
\end{tabular}
Lower 10\%:
Lower 20\%:
Lower 30\%:
Lower 40\%:
Mid-score:
Upper 40\%:
Upper 30\%:
Upper 20\%:
Upper 10\%:
\(68.42-1.28(10.41)=55.10\)
\(68.42-.84(10.41)=59.68\)
\(68.42-.52(10.41)=63.01\)
\(68.42-.25(10.41)=65.82\)
\(68.42+0(10.41)=68.42\)
\(68.42+.25(10.41)=71.02\)
\(68.42+.52(10.41)=73.83\)
\(68.42+.84(10.41)=77.16\)
\(68.42+1.28(10.41)=81.74\)

\[
\chi^{2}=\sum_{i=1}^{k} \frac{\left(f_{i}-e_{i}\right)^{2}}{e_{i}}
\]
\(\chi^{2}\) distribution with d.fofo \(=k-p-1\), where \(p\) - number of estimated parameters, \(k\) - number of bins
\(p=2\) includes mean and variance
d.f. \(=10-2-1\)
\(\chi^{2}=7.2\)
\(p\)-value \(=0.41\),
cannot reject \(\mathrm{H}_{0}\)

R: more advanced
```

\#input data
x = scan(
"http://edu.modas.l
u/data/txt/chemline
.txt", skip=1)

```
\#Shapiro-Wilk
shapiro.test (x)
\#Kolmogorov-Smirnov
ks.test (x, "pnorm",
\[
\begin{aligned}
& \operatorname{mean}=\operatorname{mean}(x) \\
& s d=s d(x))
\end{aligned}
\]
\#Jarque-Bera
library (tseries) jarque.bera.test(x)

\section*{HYPOTHESES FOR VARIANCE}

Confidence intervals for variance
Hypotheses for variance
Goodness of fit, test for independence
ANalysis Of VAriance (ANOVA)
Linear regression
Logistic regression

\section*{INTRODUCTION TO ANOVA}

Why ANOVA?

Means for more than 2 populations We have measurements for 5 conditions. Are the means for these conditions equal?

\section*{Validation of the effects}

We assume that we have several factors affecting our data. Which factors are most significant? Which can be neglected?

\section*{ANOVA}
example from Partek \({ }^{\text {TM }}\)

If we would use pairwise comparisons, what will be the probability of getting error?
Number of comparisons: \(C_{2}^{5}=\frac{5!}{2!3!}=10\)
Probability of an error: \(1-(0.95)^{10}=0.4\)


\section*{INTRODUCTION TO ANOVA}

\section*{Example}

As part of a long-term study of individuals 65 years of age or older, sociologists and physicians at the Wentworth Medical Center in upstate New York investigated the relationship between geographic location and depression. A sample of 60 individuals, all in reasonably good health, was selected; 20 individuals were residents of Florida, 20 were residents of New York, and 20 were residents of North Carolina. Each of the individuals sampled was given a standardized test to measure depression. The data collected follow; higher test scores indicate higher levels of depression.

\section*{Q: Is the depression level same in all 3 locations?}
\begin{tabular}{|c|}
\hline depression \\
\left.\begin{tabular}{|cc|}
\hline \multicolumn{3}{c|}{ 1. Good health respondents } \\
Florida & New York N. Carolina \\
3 & 8 \\
7 & 11
\end{tabular}\(\right) 70\) \\
7
\end{tabular}


\section*{INTRODUCTION TO ANOVA}
```

$H_{0}: \mu_{1}=\mu_{2}=\mu_{3}$
H_{a} : not all 3 means are equal

```


\section*{INTRODUCTION TO ANOVA}

Assumptions for ANOVA, ANOVA in R

\section*{Assumptions for Analysis of Variance}
1. For each population, the response variable is normally distributed
2. The variance of the respond variable, denoted as \(\sigma^{2}\) is the same for all of the populations.
3. The observations must be independent.

```


build the model

model = aov(x ~ fact1 + ..., data)

```
```


summary (anova table)

summary(model)
anova (model)

```
```


posthoc

TukeyHSD (model)

```
\# check for normality
shapiro.test( residuals (model) )

\section*{INTRODUCTION TO ANOVA}

\author{
Some Calculations
}
\begin{tabular}{|rrcr|}
\hline Parameter & Florida & New York N. Carolina \\
\hline \(\mathrm{m}=\) & 5.55 & 8.35 & 7.05 \\
overall mean \(=\) & 6.98333 & & \\
var \(=\) & 4.5763 & 4.7658 & 8.0500 \\
\hline
\end{tabular}

Let's estimate the variance of sampling distribution. If \(\mathrm{H}_{0}\) is true, then all \(m_{i}\) belong to the same distribution

\(\sigma_{m}^{2}=\frac{\sum_{i=1}^{k}\left(m_{i}-\bar{m}\right)^{2}}{k-1}=\frac{(5.55-6.98)^{2}+(8.35-6.98)^{2}+(7.05-6.98)^{2}}{3-1}=1.96\) \(\sigma^{2}=n \sigma_{m}^{2}=20 \times 1.96=39.27\) - this is called between-treatment estimate, works only at \(\mathrm{H}_{0}\)

At the same time, we can estimate the variance just by averaging out variances for each populations:
\[
\sigma^{2}=\frac{\sum_{i=1}^{k} \sigma_{i}^{2}}{k}=\frac{4.58+4.77+8.05}{3}=5.8
\]
- this is called within-treatment estimate

Does between-treatment estimate and within-treatment estimate give variances of the same "population"?

\section*{SINGLE-FACTOR ANOVA}

\author{
Theory
}
\[
H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{k}
\]
\[
H_{\mathrm{a}}: \text { not all } k \text { means are equal }
\]



\section*{SINGLE-FACTOR ANOVA}

The Main Equation
Total sum squares
\(S S T=\sum_{j=1}^{k} \sum_{i=1}^{n_{j}}\left(x_{i j}-\bar{m}\right)^{2} \quad\) SS due to treatment \(\quad\) SSTR \(=\sum_{j=1}^{k} n_{j}\left(m_{j}-\bar{m}\right)^{2}\)
SS due to error

Total variability of the data include variability
SSE \(=\sum_{j=1}^{k}\left(n_{j}-1\right) s_{j}^{2}\) due to treatment and variability due to error
\[
\begin{gathered}
\text { d.f. }(S S T)=\text { d.f. }(S S T R)+d . f .(S S E) \\
n_{T}-1=(k-1)+\left(n_{T}-k\right)
\end{gathered}
\]

\section*{Partitioning}

The process of allocating the total sum of squares and degrees of freedom to the various components.

Example

Sum squares total, SST distances from \(\bullet\) to -
\[
S S T=\sum_{j=1}^{k} \sum_{i=1}^{n_{j}}\left(x_{i j}-\bar{m}\right)^{2}
\]

Sum squares due to error, SSE distances from \(\bullet\) to -
\[
S S E=\sum_{j=1}^{k}\left(n_{j}-1\right) s_{j}^{2}
\]

Sum squares due to treatment, SSTR
distances from - to -
\[
S S T R=\sum_{j=1}^{k} n_{j}\left(m_{j}-\bar{m}\right)^{2}
\]


\section*{SINGLE-FACTOR ANOVA}

\section*{Example: ANOVA in R}

\section*{ANOVA table}

A table used to summarize the analysis of variance computations and results. It contains columns showing the source of variation, the sum of squares, the degrees of freedom, the mean square, and the \(F\) value(s).

In Excel use:
\(\rightarrow\) Data \(\rightarrow\) Data Analysis \(\rightarrow\) ANOVA Single Factor
Let's perform for dataset 1: "good health"
\begin{tabular}{lr|rrrrrrr}
\multicolumn{9}{c}{ SSTR } \\
ANOVA & & & & & & & & \\
\hline Source of Variation & SS & & \(d f\) & & \(M S\) & \(F\) & \(P\)-value & F crit \\
\hline Between Groups & 78.53333 & & 2 & 39.26667 & 6.773188 & 0.002296 & 3.158843 \\
Within Groups & 330.45 & & 57 & 5.797368 & & & &
\end{tabular}
```


read dataset

Dep = read.table(
"http://edu.modas.lu/data/
txt/depression2.txt",
header=T,
sep="\t",
as.is=FALSE)
str(Dep)

consider only healthy

DepGH = Dep[Dep\$Health ==
"good",]

build 1-way ANOVA model

res1 = aov(Depression ~
Location, DepGH)
summary(resl)

```
Total 408.9833

\section*{SSE}

LUXEMBOURG INSTITUTE OF HEALTH

\section*{SINGLE-FACTOR ANOVA}

\section*{Post-hoc Analysis}

\section*{Post-hoc analysis}
allows for additional exploration of significant differences in the data, when significant effect of the factor was already confirmed (for example, by ANOVA).

```


build 1-way ANOVA model

res1 = aov(Depression ~
Location, DepGH)
summary(res1)

add post-hoc analysis

```
TukeyHSD (res1)
```

If you can - use Tukey
Honest Significant
Differences
if not - just do FDR-
adjustment

```

\section*{SINGLE-FACTOR ANOVA}

\section*{Non-parametric (Kruskal-Wallis)}

Kruskal-Wallis rank sum test
is a non-parametric version of 1-way ANOVA (ANOVA on ranks).
```


non-parametric

kruskal.test(DepGH)

posthoc 1

pairwise.wilcox.test(DepGH$Depression,
DepGH$Location, p.adjust.method = "bonf")

posthoc 2

\#install.packages("dunn.test")
library(dunn.test)
dunn.test(DepGH$Depression, DepGH$Location)

```

\section*{MULTI-FACTOR ANOVA}

\section*{Factors and Treatments}

\section*{Factor}

Another word for the independent variable of interest.

\section*{Treatments \\ Different levels of a factor.}
depression

\section*{Factorial experiment}

An experimental design that allows statistical conclusions about two or more factors.
```


read dataset

Dep = read.table(
"http://edu.modas.lu/data/
txt/depression2.txt",
header=T,
sep="\t",
as.is=FALSE)
str(Dep)

build 2-way ANOVA model

res2 = aov(Depression ~
Health + Location+
Health*Location, Dep)
summary(res2)

post-hoc

```
TukeyHSD (res2)

\section*{Interaction}

The effect produced when the levels of one factor interact with the levels of another factor in influencing the response variable.

\section*{MULTI-FACTOR ANOVA}

\section*{Replications \\ The number of times each experimental condition is repeated in an experiment.}
\(a=\) number of levels of factor A
\(b=\) number of levels of factor B
\(r=\) number of replications
\(n_{r}=\) total number of observations taken in the experiment; \(n_{T}=a b r\)
\begin{tabular}{lcccc}
\begin{tabular}{l} 
Source \\
of Variation
\end{tabular} & \begin{tabular}{c} 
Sum \\
of Squares
\end{tabular} & \begin{tabular}{c} 
Degrees \\
of Freedom
\end{tabular} & \begin{tabular}{c} 
Mean \\
Square
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{F}\) \\
Factor A
\end{tabular} \\
SSA & \(a-1\) & MSA \(=\frac{\text { SSA }}{a-1}\) & \(\frac{\text { MSA }}{\text { MSE }}\) \\
Factor B & SSB & \(b-1\) & MSB \(=\frac{\text { SSB }}{b-1}\) & \(\frac{\text { MSB }}{\text { MSE }}\) \\
Interaction & SSAB & \((a-1)(b-1)\) & MSAB \(=\frac{\text { SSAB }}{(a-1)(b-1)}\) & \(\frac{\text { MSAB }}{\text { MSE }}\) \\
Error & SSE & \(a b(r-1)\) & MSE \(=\frac{\text { SSE }}{a b(r-1)}\) & \\
Total & SST & \(n_{T}-1\) & &
\end{tabular}

\section*{Example}

```


check normality

shapiro.test(residuals(model))

```
```

Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = Depression ~ Health + Location + Health * Location,
data = Dep)
\$Health
diff lwr upr p adj
good-bad -7.633333-8.694414 -6.572252
\$Location
M York Florida -
1.850 0.2921599 3.4078401 0.0155179
North Carolina-Florida 0.475 -1.0828401 2.0328401 0.7497611
North Carolina-New York -1.375 -2.9328401 0.1828401 0.0951631
\$`Health:Location
good:Florida-bad:Florida
bad:New York-bad:Florida
good:New York-bad:Florida
bad:North Carolina-bad:Florida
good:North Carolina-bad:Florida
bad:New York-good:Florida
good:New York-good:Florida
bad:North Carolina-good:Florida
good:North Carolina-good:Florida
good:New York-bad:New York
bad:North Carolina-bad:New York
good:North Carolina-bad.New York
bad:North Carolina-bad:New York
bad:North Carolina-good:New York
good:North Carolina-bad:North Carolina -6.90 -9.5893115 -4.210689 0.0000000

```


\section*{MULTI-FACTOR ANOVA}

\section*{Example 2}
\begin{tabular}{|cll|}
\hline \multicolumn{2}{|c|}{ salaries } \\
\hline Salary/week & Occupation & Gender \\
872 & Financial Manager & Male \\
859 & Financial Manager & Male \\
1028 & Financial Manager & Male \\
1117 & Financial Manager & Male \\
1019 & Financial Manager & Male \\
519 & Financial Manager & Female \\
702 & Financial Manager & Female \\
805 & Financial Manager & Female \\
558 & Financial Manager & Female \\
591 & Financial Manager & Female \\
\hline
\end{tabular}

Q: Which factors have significant effect on the salary
```


read dataset

Sal = read.table(
"http://edu.modas.lu/data/txt/salaries.txt",
header=T,sep="\t",as.is=FALSE)
str(Sal)

build 2-way ANOVA model

mod = aov(Salary.week ~
Occupation + Gender + Occupation*Gender, Sal)
summary (mod)

post-hoc

TukeyHSD (mod)

```
\begin{tabular}{|l|r|r|r|r|l|l|}
\hline Sourceof Variation & \multicolumn{1}{c|}{ SS } & \multicolumn{1}{c|}{\(d f\)} & \multicolumn{1}{c|}{ MS } & \multicolumn{1}{c|}{\(F\)} & \(P\)-value & F crit \\
\hline Sample & 221880 & 1 & 221880 & 21.254 & 0.000112 & 4.25968 \\
\hline Columns & 276560 & 2 & 138280 & 13.246 & 0.000133 & 3.40283 \\
\hline Interaction & 115440 & 2 & 57720 & 5.5289 & 0.010595 & 3.40283 \\
\hline Within & 250552 & 24 & 10439.7 & & & \\
\hline & & & & & & \\
\hline Итого & 864432 & 29 & & & & \\
\hline
\end{tabular}

\section*{MULTI-FACTOR ANOVA}

\section*{Example 2}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & Sum Sq & Mean Sc & F value & Pr \((>\mathrm{F})\) & & & \\
\hline Occupation & 2 & 276560 & 138280 & 13.246 & 0.000133 & *** & & \\
\hline Gender & 1 & 221880 & 221880 & 21.254 & 0.000112 & & & \\
\hline Occupation:Gender & 2 & 115440 & 57720 & 5.529 & 0.010595 & * & & \\
\hline Residuals & 24 & 250552 & 10440 & & & & & \\
\hline --- & & & & & & & & \\
\hline Signif. codes: 0 & '* & **' 0.001 & 1 '**' 0 & . 01 '*' & 0.05 '.' & 0.1 & , & 1 \\
\hline
\end{tabular}

\footnotetext{
Tukey multiple comparisons of means
95\% family-wise confidence level
Fit: aov(formula = Salary.week ~ Occupation + Gender + Occupation * Gender, data = Sal)
\$Occupation

Financial Manager-Computer Programmer Pharmacist-Computer Programmer Pharmacist-Financial Manager
diff lwr upr p adj
38 -76.11081 \(152.1108 \quad 0.6874260\)
\(220105.88919334 .1108 \quad 0.0001903\)
\(182 \quad 67.88919 \quad 296.1108 \quad 0.0015387\)
\$Gender
diff lwr upr padj
\$`Occupation:Gender
inancial Pharmacist:Female-Computer Programmer:Female Computer Programmer:Male-Computer Programmer:Female Financial Manager:Male-Computer Programmer:Female Pharmacist:Male-Computer Programmer:Female Pharmacist:Female-Financial Manager:Female Computer Programmer:Male-Financial Manager:Female Financial Manager:Male-Financial Manager:Female Pharmacist:Male-Financial Manager:Female Computer Programmer:Male-Pharmacist:Female Financial Manager:Male-Pharmacist:Female Pharmacist:Male-Pharmacist:Female
Financial Manager:Male-Computer Programmer:Male Pharmacist:Male-Computer Programmer:Male \(\begin{array}{rrrr}106 & -305.80351 & 93.80351 & 0.5814961 \\ 190 & -9.80351 & 389.80351 & 0.0689592\end{array}\) \(\begin{array}{rrrr}190 & -9.80351 & 389.80351 & 0.0689592 \\ 56 & -143.80351 & 255.80351 & 0.9508750\end{array}\) \(238 \quad 38.19649437 .803510 .0131635\) \(306 \quad 106.19649505 .803510 .0010255\)
\(296 \quad 96.19649495 .80351 \quad 0.0015025\)
\(162-37.80351361 .803510 .1616324\)
\(344 \quad 144.19649543 .803510 .0002396\)
\(412 \quad 212.19649611 .803510 .0000185\) \(-134-333.80351 \quad 65.803510 .3334443\)
\(48-151.80351247 .80351 \quad 0.9743050\)
\(116-83.80351315 .803510 .4872344\)
\(182-17.80351381 .80351 \quad 0.0889147\)
\(\begin{array}{rrrrr}182 & -17.80351 & 381.80351 & 0.0889147\end{array}\)
\(68-131.80351267 .803510 .8950589\)
}

\section*{EXPERIMENTAL DESIGN}

\author{
Experiments
}

\section*{Aware of Batch Effect !}

When designing your experiment always remember about various factors which can effect your data: batch effect, personal effect, lab effect...


\section*{EXPERIMENTAL DESIGN}

Experiments

\section*{Completely randomized design}

An experimental design in which the treatments are randomly assigned to the experimental units.


We can nicely randomize:
Day effect
Batch effect

\section*{EXPERIMENTAL DESIGN}

\section*{Experiments}

\section*{Blocking}

The process of using the same or similar experimental units for all treatments. The purpose of blocking is to remove a source of variation from the error term and hence provide a more powerful test for a difference in population or treatment means.


\section*{EXPERIMENTAL DESIGN}

Experiments
```

A good suggestion... ()

```

Block what you can block, randomize what you cannot, and try to avoid unnecessary factors

\section*{mice}

\section*{Q: Does mouse strain affect the weight (e.g. Starting weight)? Show the effects of sex and strain using ANOVA}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 129S1/SvImJ A/J & & AKR/J & BALB/cByJ & BTBR_T+_ & BUB/BnJ & \(\mathrm{C} 3 \mathrm{H} / \mathrm{HeJ}\) \\
\hline 1 Female & 20.5 & 23.2 & 24.6 & 22.8 & 28 & 27.1 & 21.4 \\
\hline 2 & 20.8 & 22.4 & 26 & 23.5 & 25.8 & 24.1 & 28.2 \\
\hline 3 & 19.8 & 22.7 & 31 & 23.8 & 26 & 25.9 & 23.5 \\
\hline 4 & 21 & 21.4 & 25.7 & 22.7 & 26.5 & 25.9 & 23.9 \\
\hline 5 & 21.9 & 22.6 & 23.7 & 19.7 & 26.3 & 26 & 22.8 \\
\hline 6 & 22.1 & 20 & 21.1 & 26.2 & 27 & 27.1 & 18.4 \\
\hline 7 & 21.3 & 21.8 & 23.7 & 24.1 & 26 & 26.2 & 21.8 \\
\hline 8 & 20.1 & 20.8 & 24.5 & 23.5 & 28.8 & 27.5 & 25 \\
\hline 9 & 18.9 & 19.5 & 32.3 & 23.8 & 28 & 30.2 & 20.1 \\
\hline 10 Male & 24.7 & 25.8 & 42.8 & 29.3 & 34.1 & 36.2 & 31.2 \\
\hline 11 & 27.2 & 27.7 & 32.6 & 32.2 & 33 & 36.9 & 28.2 \\
\hline 12 & 23.9 & 29.9 & 34.8 & 29.7 & 38.7 & 34.4 & 26.7 \\
\hline 13 & 26.3 & 24.8 & 32.8 & 30 & 39 & 34.3 & 29.3 \\
\hline 14 & 26 & 22.9 & 34.8 & 27 & 31 & 31.7 & 33.1 \\
\hline 15 & 23.3 & 24.5 & 32.8 & 30 & 32 & 33 & 28.2 \\
\hline 16 & 26.5 & 24.6 & 33.6 & 33.1 & 33.7 & 33.2 & 31.2 \\
\hline 17 & 27.4 & 21.6 & 30.7 & 30.6 & 33.1 & 34 & 27.7 \\
\hline 18 & 27.5 & 26.9 & 36.5 & 28.7 & 32.5 & 31 & 27.5 \\
\hline
\end{tabular}

\section*{HYPOTHESES FOR VARIANCE}

Confidence intervals for variance
Hypotheses for variance
Goodness of fit, test for independence
ANalysis Of VAriance (ANOVA)
Linear regression
Logistic regression

LUXEMBOURG INSTITUTE OF HEALTH

\section*{SIMPLE LINEAR REGRESSION}

Example


Cells are grown under different temperature conditions from \(20^{\circ}\)

\section*{cells} to \(40^{\circ}\). A researched would like to find a dependency between \(T\) and cell number.
```

Cells = read.table(
"http://edu.modas.lu/data/txt/cells.txt",
sep="\t",
header=TRUE)
str(Cells)
plot(Cells, pch=19)

```

\section*{Dependent variable}

The variable that is being predicted or explained. It is denoted by \(y\).

\section*{Independent variable}

The variable that is doing the predicting or explaining. It is denoted by \(x\).

\section*{SIMPLE LINEAR REGRESSION}

\section*{Regression Model and Regression Line}

\section*{Simple linear regression}

Regression analysis involving one independent variable and one dependent variable in which the relationship between the variables is approximated by a straight line.
- Building a regression means finding and tuning the model to explain the behaviour of the data


\section*{SIMPLE LINEAR REGRESSION}

\section*{Regression Model and Regression Line}

\section*{Regression model}

The equation describing how y is related to x and an error term; in simple linear regression, the regression model is \(y=\beta_{0}+\beta_{1} x+\varepsilon\)

\section*{Regression equation}

The equation that describes how the mean or expected value of the dependent variable is related to the independent variable; in simple linear regression, \(E(y)=\beta_{0}+\beta_{1} x\)

- Model for a simple linear regression:
\[
y(x)=\beta_{1} x+\beta_{0}+\varepsilon
\]

\section*{SIMPLE LINEAR REGRESSION}
\[
y(x)=\beta_{1} x+\beta_{0}+\varepsilon
\]


LUXEMBOURG INSTITUTE OF HEALTH

\section*{SIMPLE LINEAR REGRESSION}

Estimated regression equation

\section*{Estimated regression equation}

The estimate of the regression equation developed from sample data by using the least squares method. For simple linear regression, the estimated regression equation is \(y=b_{0}+b_{1} x\)

cells
\[
E[y(x)]=b_{1} x+b_{0}
\]
```

plot(Cells, pch=19)
abline(lm(Cell.Number ~ Temperature, Cells),col=2, lwd=2)

add smooth curve (loess/lowess) (just fun)

lines(lowess (Cells$Temperature, Cells$Cell.Number),lty=2)

```


\section*{LINEAR REGRESSION}

\section*{Assumptions}

\section*{Assumptions for Simple Linear Regression}
1. The error term \(\varepsilon\) is a random variable with 0 mean, i.e. \(\mathrm{E}[\varepsilon]=0\)
\[
y(x)=\beta_{1} x+\beta_{0}+\varepsilon
\]
2. The variance of \(\varepsilon\), denoted by \(\sigma^{2}\), is the same for all values of \(x\)
3. The values of \(\boldsymbol{\varepsilon}\) are independent
3. The term \(\varepsilon\) is a normally distributed variable


\section*{SIMPLE LINEAR REGRESSION}

\section*{Exact calculation for the simplest case}

\section*{Least squares method}

A procedure used to develop the estimated regression equation.
The objective is to minimize \(\sum\left(y_{i}-\hat{y}_{i}\right)^{2}\)
\(y_{t}=\) observed value of the dependent variable for the \(i\) th observation
\(\hat{y}_{t}=\) estimated value of the dependent variable for the \(i\) th observation
\[
\text { Slope: } \quad b_{1}=\frac{\sum\left(x_{i}-m_{x}\right)\left(y_{i}-m_{y}\right)}{\left(x_{1}-m_{x}\right)^{2}}
\]
\[
\text { Intersect: } b_{0}=m_{y}-b_{1} m_{x}
\]

\section*{SIMPLE LINEAR REGRESSION}

Sum squares due to error
distances from \(\bullet\) to \(-S S E=\sum\left(y_{i}-\hat{y}_{i}\right)^{2}\)
Sum squares total
distances from
\[
S S T=\sum\left(y_{i}-m_{y}\right)^{2}
\]

Sum squares due to regression
distances from - to \(-\quad S S R=\sum\left(\hat{y}_{i}-m_{y}\right)^{2}\)


The Main Equation
\[
S S T=S S R+S S E
\]

\section*{SIMPLE LINEAR REGRESSION}

\section*{ANOVA and Regression}


\section*{SIMPLE LINEAR REGRESSION}

\section*{Coefficient of Determination}
\(S S E=\sum\left(y_{i}-\hat{y}_{i}\right)^{2}\)
\[
S S T=\sum\left(y_{i}-m_{y}\right)^{2}
\]
\[
S S T=S S R+S S E
\]

\section*{Coefficient of determination}

A measure of the goodness of fit of the estimated regression equation. It can be interpreted as the proportion of the variability in the dependent variable \(y\) that is explained by the estimated regression equation.

\[
R^{2}=\frac{S S R}{S S T}=1-\frac{S S E}{S S T}
\]
\[
r=\operatorname{sign}\left(b_{1}\right) \sqrt{R^{2}}
\]

NOTE: There is a non-obvious case when \(\mathrm{R}^{2}<0\).
It means that the model is worse than the mean value


\section*{TESTING FOR SIGNIFICANCE}

Estimation of \(\sigma^{2}\)
\(i\)-th residual
The difference between the observed value of the dependent variable and the value predicted using the estimated regression equation; for the \(i\)-th observation the \(i\)-th residual is: \(y_{i}-\hat{y}_{i}\)

\section*{Mean square error}

The unbiased estimate of the variance of the error term \(\sigma^{2}\). It is denoted by MSE or \(s^{2}\).
Standard error of the estimate: the square root of the mean square error, denoted by \(s\). It is the estimate of \(\sigma\), the standard deviation of the error term \(\varepsilon\).

\[
\begin{aligned}
& s^{2}=M S E=\frac{S S E}{n-2} \\
& s=\sqrt{M S E}=\sqrt{\frac{S S E}{n-2}}
\end{aligned}
\]

\section*{TESTING FOR SIGNIFICANCE}

If assumptions for \(\varepsilon\) are fulfilled, then the sampling distribution for
\[
b_{1} \text { is as follows: }
\]
\[
\begin{aligned}
& y(x)=\beta_{1} x+\beta_{0}+\varepsilon \\
& \hat{y}(x)=b_{1} x+b_{0}
\end{aligned}
\]

Expected value \(E\left[b_{1}\right]=\beta_{1}\)

St.deviatiation
\[
\sigma_{b_{1}}=\frac{\sigma}{\sqrt{\sum\left(x_{i}-m_{x}\right)^{2}}}=\text { Standard Error }
\]

Distribution: normal

Interval Estimation for \(\beta_{1}\)
\[
\begin{aligned}
& \beta_{1}=b_{1} \pm t_{\alpha / 2}^{(n-2)} \frac{\sigma}{\sqrt{\sum\left(x_{i}-m_{x}\right)^{2}}} \\
& \beta_{1}=b_{1} \pm t_{\alpha / 2}^{(n-2)} S E
\end{aligned}
\]

\section*{TESTING FOR SIGNIFICANCE}
\[
\begin{aligned}
& \boldsymbol{H}_{0}: \beta_{1}=\mathbf{0} \text { insignificant } \\
& \boldsymbol{H}_{\mathrm{a}}: \beta_{1} \neq \mathbf{0}
\end{aligned}
\]
1. Build a t-test statistics.
\[
t=\frac{b_{1}}{\sigma_{b_{1}}}=\frac{b_{1}}{s} \sqrt{\sum\left(x_{i}-m_{x}\right)^{2}}
\]
2. Calculate \(p\)-value for \(t\)
\[
\begin{array}{ll}
p \text {-value approach: } & \text { Reject } H_{0} \text { if } p \text {-value } \leq \alpha \\
\text { Critical value approach: } & \text { Reject } H_{0} \text { if } t \leq-t_{\alpha / 2} \text { or if } t \geq t_{a / 2}
\end{array}
\]
where \(t_{\alpha / 2}\) is based on a \(t\) distribution with \(n-2\) degrees of freedom.

LUXEMBOURG
INSTITUTE
OF HEALTH

\section*{REGRESSION ANALYSIS}

\section*{Example}

In R you should run the complete analysis:
model=lm(Cell.Number~Temperature, data=Cells)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{SUMMARY OUTPUT} & & & & & & & \\
\hline \multicolumn{2}{|l|}{Regression Statistics} & & & & & & & \\
\hline Multiple R & 0.95091908 & & & & & & & \\
\hline R Square & 0.9042471 & & & & & & & \\
\hline Adjusted R Square & 0.89920747 & & & & & & & \\
\hline Standard Error & 31.7623796 & & & & & & & \\
\hline Observations & 21 & & & & & & & \\
\hline & & & & & & & & \\
\hline \multirow[t]{2}{*}{ANOVA} & & & & & & & & \\
\hline & \(d f\) & SS & MS & \(F\) & Significance \(F\) & & & \\
\hline Regression & 1 & 181015.1117 & 181015.11 & 179.4274 & 3.95809E-11 & & & \\
\hline Residual & 19 & 19168.12641 & 1008.8488 & & & & & \\
\hline \multirow[t]{3}{*}{Total} & 20 & 200183.2381 & & & & & & \\
\hline & & & & & & & & \\
\hline & Coefficients & Standard Error & t Stat & \(P\)-value & Lower 95\% & Upper 95\% & Lower 95.0\% & Upper 95.0\% \\
\hline Intercept & -190.783550 & 35.031618 & -5.446039 & \(2.96 \mathrm{E}-05\) & -264.10557 & -117.46153 & -264.10557 & -117.46153 \\
\hline Temperature & 15.332468 & 1.144637 & 13.395051 & 3.96E-11 & 12.93671537 & 17.7282197 & 12.93671537 & 17.7282197 \\
\hline
\end{tabular}
```


Regression table

summary (model)

ANOVA table

anova (model)

intercept/slope

model\$coefficients

```

\section*{REGRESSION ANALYSIS}

\section*{Confidence and Prediction}

\section*{Confidence interval}

The interval estimate of the mean value of \(y\) for a given value of \(x\).

\section*{Prediction interval}

The interval estimate of an individual value of \(y\) for a given value of \(x\).



LUXEMBOURG INSTITUTE OF HEALTH

\section*{REGRESSION ANALYSIS}

\section*{Example}

\section*{cells}
```

x = data$Temperature
y = data$Cell.Number
res = lm(y~x)
res
summary (res)

draw the data

x11()
plot(x,y)

draw the regression and its confidence (95%)

lines(x, predict(res,int = "confidence") [,1],col=4,lwd=2)
lines(x, predict(res,int = "confidence") [,2],col=4)
lines(x, predict(res,int = "confidence") [,3],col=4)

draw the prediction for the values (95%)

lines(x, predict(res,int = "pred") [,2],col=2)
lines(x, predict(res,int = "pred") [,3],col=2)

```

\section*{REGRESSION ANALYSIS}

\section*{Residuals}


Panel B


\section*{REGRESSION ANALYSIS}

\author{
Task
}

\section*{rana}

A biology student wishes to determine the relationship between temperature and heart rate in leopard frog, Rana pipiens. He manipulates the temperature in \(2^{\circ}\) increment ranging from 2 to \(18^{\circ} \mathrm{C}\) and records the heart rate at each interval. His data are presented in table rana.txt
1) Build the model and provide the \(p\)-value for linear dependency
2) Provide interval estimation for the slope of the dependency
3) Estimate \(95 \%\) prediction interval for heart rate at \(15^{\circ}\)

\section*{REGRESSION ANALYSIS}


\section*{REGRESSION ANALYSIS}
 OF HEALTH

\section*{MULTIPLE REGRESSION}

Often one variable is not enough, and we need several independent variables to predict dependent one. Let's consider R internal swiss dataset: standardized fertility measure and socio-economic indicators for 47 Frenchspeaking provinces of Switzerland at about 1888. See ?swiss

```

\#install.packages("PerformanceAnalytics")
library(PerformanceAnalytics)
chart.Correlation(swiss)
modAll = lm(Fertility ~ . , data = swiss)
summary(modAll)
plot(swiss\$Fertility, predict(modAll,swiss),xlab="Real
Fertility",ylab="Predicted Fertility",pch=19)
abline(a=0,b=1, col=2,lty=2)

```

Check further analysis in the HTML...

\section*{MULTIPLE REGRESSION}
> Check whether your linear model is adequate (visualize residual, draw lowess curve)
\(>\) Check the significance of the variables
> Check and try to avoid correlated variables
> If you need to choose optimal variables:
- maximize \(\mathrm{R}^{2}\)
- minimize information criteria: BIC and AIC
\(>\) Add / remove variable and compare models using likelihood ratio or chi2 test.
- anova(modAll, modSig)

\section*{REGRESSION ANALYSIS}

Logistic Regression

FIGURE 15.12 LOGISTIC REGRESSION EQUATION FOR \(\beta_{0}=-7\) AND \(\beta_{1}=3\)

in R: glm(..., family="binomial")

\section*{Example:}
```

Mice = read.table(
"http://edu.modas.lu/data/txt/mice.txt",
header=T,sep="\t",as.is=FALSE)
str(Mice)

let's remove animals with NA values

ikeep = apply(is.na(Mice),1,sum) == 0
model = glm(Sex ~ Blood.pH +
Bone.mineral.density + Lean.tissues.weight

+ Ending.weight,
data = Mice[ikeep,],
family = "binomial")

```
summary (model)
http://edu.modas.lu/modas pm/part2.html

To be continued in Lecture 4...

\section*{Thank you for your attention}
```


[^0]: In R use one of solutions:
 2*(1-pf(2.4,25,15))
 var.test(data1, data2)

