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Lecture 2. Testing hypotheses

COURSE OVERVIEW
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Outline (to be updated during the course)

Lecture 1, 2024-02-05
numerical measures (location/variability/association), parametric/nonparametric
basic summary and visualization in R: barplot, boxplot, scatter plot
z-score, detection of outliers
continuous distributions (normal, Student, 2, F), linkage to probability
sampling distribution, methods for sampling 

Lecture 2, 2024-02-19
interval estimations for mean and proportion
hypotheses testing for mean(s), p-value, tails
number of samples
power of a test
non-parametric tests
multiple comparisons

Lecture 3, 2024-03-04
interval estimations and hypotheses for variance
model fitting and test for independence
linear models, ANOVA, posthoc analysis
simple and multiple linear regression
factors in linear regression
logistic regression

Lecture 4, 2024-03-18  (please, propose!)
omics data analysis?
survival analysis?
clustering?
more practical exercise?

Let's work at a comfortable speed!

Materials and other courses:

http://edu.modas.lu

https://posit.co/downloads/https://cran.r-project.org/

http://edu.modas.lu/
https://posit.co/downloads/
https://cran.r-project.org/


Lecture 2. Testing hypotheses

INTERVAL ESTIMATES: Means and Proportions
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Interval estimates, confidence intervals for means

Confidence intervals for proportions

Interval estimation in the case of random functions
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NUMERICAL MEASURES
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Population and Sample

POPULATION

µ  mean 

2  variance 

N  number of elements

(usually N∞)

SAMPLE

m, 𝒙  mean

s2  variance 

n  number of

elements

Sample statistic (parameter)
A numerical value used as a 
summary measure for a sample 
of size n (e.g., the sample mean 
m, the sample variance s2, and 
the sample standard deviation s)

Population parameter
A numerical value used as a 
summary measure for a 
population of size N (e.g., the 
population mean , variance 
2, standard deviation  )

ID Strain Sex
Starting 

age

Ending 

age

Starting 

weight

Ending 

weight

Weight 

change

Bleeding 

time

Ionized 

Ca in 

blood

Blood pH

Bone 

mineral 

density

Lean 

tissues 

weight

Fat 

weight

1 129S1/SvImJ f 66 116 19.3 20.5 1.062 64 1.2 7.24 0.0605 14.5 4.4

2 129S1/SvImJ f 66 116 19.1 20.8 1.089 78 1.15 7.27 0.0553 13.9 4.4

3 129S1/SvImJ f 66 108 17.9 19.8 1.106 90 1.16 7.26 0.0546 13.8 2.9

368 129S1/SvImJ f 72 114 18.3 21 1.148 65 1.26 7.22 0.0599 15.4 4.2

369 129S1/SvImJ f 72 115 20.2 21.9 1.084 55 1.23 7.3 0.0623 15.6 4.3

370 129S1/SvImJ f 72 116 18.8 22.1 1.176 1.21 7.28 0.0626 16.4 4.3

371 129S1/SvImJ f 72 119 19.4 21.3 1.098 49 1.24 7.24 0.0632 16.6 5.4

372 129S1/SvImJ f 72 122 18.3 20.1 1.098 73 1.17 7.19 0.0592 16 4.1

4 129S1/SvImJ f 66 109 17.2 18.9 1.099 41 1.25 7.29 0.0513 14 3.2

5 129S1/SvImJ f 66 112 19.7 21.3 1.081 129 1.14 7.22 0.0501 16.3 5.2

10 129S1/SvImJ m 66 112 24.3 24.7 1.016 119 1.13 7.24 0.0533 17.6 6.8

364 129S1/SvImJ m 72 114 25.3 27.2 1.075 64 1.25 7.27 0.0596 19.3 5.8

365 129S1/SvImJ m 72 115 21.4 23.9 1.117 48 1.25 7.28 0.0563 17.4 5.7

366 129S1/SvImJ m 72 118 24.5 26.3 1.073 59 1.25 7.26 0.0609 17.8 7.1

367 129S1/SvImJ m 72 122 24 26 1.083 69 1.29 7.26 0.0584 19.2 4.6

6 129S1/SvImJ m 66 116 21.6 23.3 1.079 78 1.15 7.27 0.0497 17.2 5.7

7 129S1/SvImJ m 66 107 22.7 26.5 1.167 90 1.18 7.28 0.0493 18.7 7

8 129S1/SvImJ m 66 108 25.4 27.4 1.079 35 1.24 7.26 0.0538 18.9 7.1

9 129S1/SvImJ m 66 109 24.4 27.5 1.127 43 1.29 7.29 0.0539 19.5 7.1

All existing laboratory 

Mus musculus

mice 790 mice from different strains
http://phenome.jax.org

Mice = read.table("http://edu.modas.lu/data/txt/mice.txt", sep="\t", header=TRUE, stringsAsFactors = TRUE)

Load the data:
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INTERVAL ESTIMATION
Definitions

5

Interval estimate
An estimate of a population parameter that provides
an interval believed to contain the value of the
parameter. The interval estimates have the form:
point estimate ± margin of error.

Margin of error
The ± value added to and subtracted from a point
estimate in order to develop an interval estimate of a
population parameter.
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 known
The condition existing when historical data or other
information provides a good value for the population
standard deviation prior to taking a sample. The interval
estimation procedure uses this known value of σ in
computing the margin of error.

 unknown (usual situation)
The condition existing when no good basis exists
for estimating the population standard deviation
prior to taking the sample. The interval estimation
procedure uses the sample standard deviation s in
computing the margin of error.

merrorm

We will consider theory for -known cases and then generalize to -unknown
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INTERVAL ESTIMATION: σ KNOWN
Interval  Estimation for the Mean
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INTERVAL ESTIMATION: σ KNOWN
Confidence Interval

7

Confidence level
The confidence that is associated with an interval estimate. For example, if an interval
estimation procedure provides intervals such that 95% of the intervals formed using the
procedure will include the population parameter, the interval estimate is said to be
constructed at the 95% confidence level. Confidence = 1 - 

Confidence interval 
Another name for an interval estimate.

n
zm


  2/

For 95 % confidence  = 0.05, which

means that in each tail we have 0.025.

Corresponding z/2 = 1.96

0.95

0.025 0.025

/2 = /2 =

= CONFIDENCE.NORM(alpha, , n)

= -NORM.S.INV(alpha/2)*/SQRT(n)

alpha = 1 - confidence

m = … #mean

s = … #st.dev

n = … #number of observations

a = … #alpha

me = -qnorm(0.025)*s/sqrt(n)

sprintf("mu= %g +/- %g",m,me)
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INTERVAL ESTIMATION: σ KNOWN
Example: Interval  Estimation for the Mean
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n
zmmerrorm


  2/

An engineer is testing a new measuring device. He tries to put 500 µl of water into tubes and then measure the 

resulting quantity. Based on 36 measurements she estimated the average volume of 498 µl. From technical 

documentation for the device she learnt that the standard deviation of the volume is around 5 µl. Calculate the 

95% and 99% confidence intervals for the volume the researcher takes on average. Is the desired volume of 

500 µl in the confidence intervals?

=CONFIDENCE.NORM(0.05,5,36)

=CONFIDENCE.NORM(0.01,5,36)

Marginal error (merror)

95% CI:   μ = 498 +/- 1.63 = [496.4 .. 499.6]

99% CI:   μ = 498 +/- 2.14 = [495.8 .. 500.1]

m = 498

s = 5

n = 36

a = 0.05

me = -qnorm(a/2)*s/sqrt(n)

sprintf("mu = %g +/- %g",m,me)
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INTERVAL ESTIMATION: σ UNKNOWN
Population Mean:  Unknown
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Weight

39.9

19.8

32.4

21

27.5

20.8

21.3

40

10.7

22.6

27

10.8

20.9

14.7

31.4

17.2

11.4

19.1

31.3

14.8

Assume that we have a sample of 20 mice and would like to estimate an average size of a

mice in population.

n

s

n
m 




m = 22.73

s = 8.84

As we replace   s, we

introduce an additional error

and this change the distribution

from z to t (Student)

Note: not a realistic scale

here… for illustration only
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INTERVAL ESTIMATION: σ UNKNOWN
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Interval Estimation for the Mean in Case of  Unknown

Weight

39.9

19.8

32.4

21

27.5

20.8

21.3

40

10.7

22.6

27

10.8

20.9

14.7

31.4

17.2

11.4

19.1

31.3

14.8

m = 22.73

s = 8.84

n

s
tm n )1(

2/

 

s(m) = 1.98

t = 2.09

m.e. = 4.14
0.95

0.025 0.025

/2 = /2 =

Variant 1 :

=CONFIDENCE.T(alpha,s,n)

Variant 2 :

=-T.INV(alpha/2,n-1)*s/SQRT(n)

t.test(x)  # show

t.test(x)$conf.int # get

m = … #mean

s = … #st.dev

n = … #number of observations

a = … #alpha

me = -qt(0.025,n-1)*s/sqrt(n)

sprintf("mu= %g +/- %g",m,me)

Or simply:
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INTERVAL ESTIMATION
Population Proportion
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

Sampling distribution 

for proportion p

n
p

)1( 





n

pp
zp

)1(
2/


 

n

pp
p

)1( 


for 95% confidence z0.025 = 1.96

if np5 and n(1-p)5

Variant 1:

calculate n and p

=CONFIDENCE.NORM(

alpha,

SQRT(p*(1-p)),

n)

Variant 2:

calculate n and p

calculate st.error σp=SQRT(p*(1-p)/n)

calculate zα/2 statistics

=-NORM.S.INV(alpha/2)

= zα/2 * σp

alpha = 1 - confidence

Standard error of proportion
p = … #proportion

n = … #number of observations

a = … #alpha

sp = sqrt(p*(1-p)/n)

me = -qnorm(a/2)*sp

sprintf("pi= %g +/- %g",p,me)

# simple way 1: p is known

prop.test(p*n, n)

# simple way 2: 

# x – logical vector

prop.test(sum(x), length(x))

# exact

binom.test(p*n, n)
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INTERVAL ESTIMATION
Population Proportion: Some Practical Aspects
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n

pp
zp

)1(
2/


 
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2. The maximal marginal error is observed when p=0.5

1. The normal distribution is applicable only when

enough data points are observed. The rule of thumb is:

np5 and n(1-p)5

3. The estimation of the sample size can be obtained:

2

2

2/ )1(

E

ppz
n


 

where p is a best guess for  or the result of a preliminary study

np5  and  n(1-p)5
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INTERVAL ESTIMATION
Example: Population Proportion
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n

pp
zp

)1(
2/


 

pancreatitis 1. Define a 95% confidence interval for never-smoking proportion of 
people coming to a hospital.

2. How many patients you would need to have error (E) less than 1%

for 95% confidence z0.025 = 1.96
 = p  error =  25.8  5.8  %

Think whether you would like to use pooled groups (other, pancreatitis) 

or make independent analysis for each? Why?

2

2

2/ )1(

E

ppz
n


 

1

2

n= 217

n(Never)= 56

p= 0.258065

st.error (st.dev.prop)= 0.029704

cut off for 95%, z(a/2)= 1.959964

Margin of Error= 0.058219

n = sum(Pan$Disease == "other")

x = sum(Pan$Smoking == "Never" & 

Pan$Disease == "other")

p = x/n

a = 0.05

# method 1: manual calculation

sp = sqrt(p*(1-p)/n)

me = -qnorm(a/2)*sp

sprintf("pi= %g +/- %g",p,me)

# method 2: prop.test

prop.test(x,n,conf.level=1-a)$conf.int

Pan = 

read.table("http://edu.modas.lu/data/txt/

pancreatitis.txt", sep="\t", header=TRUE, 

stringsAsFactors = TRUE)

E = 0.01

n1 = qnorm(a/2)^2 * p * (1-p) / E^2

n1
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INTERVAL ESTIMATES
Population Mean: Practical Advice
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n

s
tm n )1(

2/

 
Population

any n

normal

not normal

symmetric skewed
highly 

skewed

n ~ 10 n ~ 30 n  50

if n >100 you can, in principle, use z-statistics instead of  t-statistics (error will be <1.5%)

Advice 2



Lecture 2. Testing hypotheses

INTERVAL ESTIMATES
Determining the Sample Size
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Let’s focus on another aspect: how to select a proper number of experiments.

?

),(

),(







n

EnE

nEm





2

22

2/

2/

E

z
n

n
zE













2

22

2/

E

z
n



2

2

2/ )1(

E

ppz
n


 
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INTERVAL ESTIMATES
Summary

16

Interval 

Estimation

Mean

µ - ?
Proportion 

 - ?

n

s
tm n )1(

2/

 
n

pp
zp

)1(
2/


 

Standard deviation 

 is known
Standard deviation 

is unknown (use s)

Normal statistics, z Student’s statistics, t

n
zm


  2/

Ensure that

np ≥ 5

n(1-p) ≥5

zα/2=-qnorm(α/2) tα/2= -qt(α/2, n-1)

= prop.test(c(x1,x2),c(n1,n2),conf.level=1-α) = t.test(x,conf.level=1-α)

SEp=sqrt(p*(1-p)/n) SEm=sd(x)/sqrt(n)

Alternatives:
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INTERVAL ESTIMATES FOR RANDOM FUNCTIONS

Sum and Square of Normal Variables

Distribution of sum or difference of 2 normal 
random variables

The sum/difference of 2 (or more) normal random 
variables is a normal random variable with mean 

equal to sum/difference of the means and variance 
equal to SUM of the variances of the compounds.

Distribution of sum of squares on k standard 
normal random variables

The sum of squares of k standard normal random 
variables is a 2 with k degree of freedom.

     
222

yxyx

yExEyxE

ondistributiNormalyx

 







kfdwithx

ondistributiNormalxxif

k

i

i

k








..

,...,

2

1

2

1



What to do in more complex situations? 

?
y

x
?x   ?log x
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INTERVAL ESTIMATES FOR RANDOM FUNCTIONS

Terrifying Theory

Try to solve analytically? Simplest case. E[x] = E[y] = 0



Lecture 2. Testing hypotheses

INTERVAL ESTIMATES FOR RANDOM FUNCTIONS

Practical Approach

Experimental values (x) and control (y) were measured for an

experiment. 5 replicates were performed for each.

From previous experience, we know that the error between

replicates is not too different from normal distribution.

Q: provide an interval estimation for the fold change x/y (=0.05)

(*)

# Experiment Control

1 215 83

2 253 75

3 198 62

4 225 91

5 240 70

Let us use a numerical simulation…

Mean 226.2 76.2

StDev 21.39 11.26

(*) this specific case can be solved in different ways, e.g. using log transformation:

log(x/y) = log(x) – log(y) 
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Histogram of F

F
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INTERVAL ESTIMATES FOR RANDOM FUNCTIONS

Practical Approach

2. Generate 2 sets of 10k normal or Student's random variables Mx and My with means 

of x and y and standard deviations sex, sey corresponding to ones of experimental and 

control set (assume you perform 10000 series by n=5 experiments in each).

Mean 226.2 76.2

StDev 21.39 11.26
1. Calculate standard errors from s.t.d. sx  sex

4. Study the target function. Calculate 

summary, build histogram if necessary. 

5. If you would like to have 95% interval, 

calculate 2.5% and 97.5% percentiles. 

Mean 226.2 76.2

StDev 9.57 5.03

3. Build the target function: f(x,y)

E[mx/my]  [ 2.39,  3.74 ] 

# enter data

x = c(215,253,198,225,240)

y = c(83,75,62,91,70)

# means and standard errors

mx = mean(x)

my = mean(y)

sex = sd(x)/sqrt(5)

sey = sd(y)/sqrt(5)

# simulation (can try rnorm)

Mx = mx + sex*rt(10000,5-1)

My = my + sey*rt(10000,5-1)

FXY = Mx/My

# visualization

hist(FXY, 50, freq = FALSE)

lines(density(FXY),lwd=2,col=4)

# confidence interval for means

quantile(Mx/My,c(0.025,0.975))

𝑠𝑒𝑥 =
𝑠𝑥

𝑛

6. If we need "prediction interval" instead of 

"confidence" – use x and y instead of mx, my. 

# use log-transformed data:

mx = mean(log2(x))

my = mean(log2(y))

sex = sd(log2(x))/sqrt(length(x))

sey = sd(log2(y))/sqrt(length(x))

m = mx - my

s = sqrt(sex^2 + sey^2)

me1 = m + qt(0.025,5-1)*s

me2 = m + qt(0.975,5-1)*s

2^m

2^me1

2^me2

for ratio x,y>0, you can also use log:

Normal 
model

Histogram of F

F
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e
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.5 Student's

model
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HYPOTHESES about MEAN for ONE SAMPLE

21

Hypotheses

Confusion matrix: TP, FP, TN, FN and errors

Hypotheses about the mean of one sample

Hypotheses about the proportion of one sample

P-value

Power of the test
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HYPOTHESES
Null and Alternative Hypotheses
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Null hypothesis
The hypothesis tentatively assumed true in the hypothesis testing procedure, H0

Alternative hypothesis
The hypothesis concluded to be true if the null hypothesis is rejected, Ha

Here we continue the discussion of statistical inference by showing how hypothesis testing can

be used to determine whether a statement about the value of a population parameter should or

should not be rejected.

In hypothesis testing we begin by making a tentative assumption about a population parameter,

i.e. by formulation of a null hypothesis.

H0:   const

Ha:  > const

H0:   const

Ha:  < const

H0:  = const

Ha:   const
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H0:   18

Ha:   18

HYPOTHESES
Developing Null and Alternative Hypotheses: Example 1

23

Assume that the average survival time for glioblastoma patients (early state, age<50) is 18
months. You have developed a new treatment that should increase the survival time.
Performing the clinical trial in order to determine the positive effect, you obtained an
average survival of 20 months. You would like to ensure that this effect is real, so you
perform the hypothesis testing. A research hypothesis should be stated as the alternative
hypothesis as a general guideline. Hence, the appropriate null and alternative hypotheses
for the study are

H0:   18

Ha:  > 18

If the sample results indicate that H0 cannot be rejected, researchers cannot conclude the
new treatment is better. Perhaps more research and subsequent testing should be
conducted. However, if the sample results indicate that H0 can be rejected, researchers can
make the inference that Ha:  > 18 is true. With this conclusion, the researchers gain the
statistical support necessary to state that the new treatment increases survival time, and
wide implementation of the treatment should be made.
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H0:   67.6

Ha:   67.6

HYPOTHESES
Developing Null and Alternative Hypotheses: Example 2

24

Consider the situation of a manufacturer of soft drinks who states that it fills two-liter
containers of its products with an average of at least 67.6 fluid ounces. A sample of two-liter
containers will be selected, and the contents will be measured to test the manufacturer's
claim. In this type of hypothesis testing situation, we generally assume that the
manufacturer's claim is true unless the sample evidence is contradictory. Using this
approach for the soft-drink example, we would state the null and alternative hypotheses as
follows.

H0:   67.6

Ha:  < 67.6

If the sample results indicate H0 cannot be rejected, the manufacturer's claim will not be
challenged. However, if the sample results indicate H0 can be rejected, the inference will be
made that Ha:  < 67.6 is true. With this conclusion, statistical evidence indicates that the
manufacturer's claim is incorrect and that the soft-drink containers are being filled with a
mean less than the claimed 67.6 ounces. Appropriate action against the manufacturer may
be considered in a court.
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H0:   2

Ha:   2

HYPOTHESES
Developing Null and Alternative Hypotheses: Example 3

25

For example, on the basis of a sample of parts from a shipment just received, a quality control
inspector must decide whether to accept the shipment or to return the shipment to the
supplier because it does not meet specifications. Assume that specifications for a particular
part require a mean length of 2 inches per part. If the mean length is greater or less than the
two-inch standard, the parts will cause quality problems in the assembly operation. In this
case, the null and alternative hypotheses would be formulated as follows.

H0:  = 2

Ha:   2

If the sample results indicate H0 cannot be rejected, the quality control inspector will have no
reason to doubt that the shipment meets specifications, and the shipment will be accepted.
However, if the sample results indicate H0 should be rejected, the conclusion will be that the
parts do not meet specifications. In this case, the quality control inspector will have sufficient
evidence to return the shipment to the supplier.
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HYPOTHESES
Type I Error

26

Type I error
The error of rejecting H0 when it is true.

Type II error
The error of accepting H0 when it is false.

False Positive,

 error

poor specificity

False Negative,

 error

poor sensitivity

Level of significance
The probability of making a Type I error when 
the null hypothesis is true as an equality, 
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HYPOTHESIS TESTING FOR MEAN
One-tailed Test
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One-tailed test
A hypothesis test in which rejection of the null hypothesis occurs for values of the 
test statistic in one tail of its sampling distribution

H0:   0

Ha:  > 0

H0:   0

Ha:  < 0

A Trade Commission (TC) periodically conducts statistical studies designed to test the claims that
manufacturers make about their products. For example, the label on a large can of Hilltop Coffee
states that the can contains 3 pounds of coffee. The TC knows that Hilltop's production process
cannot place exactly 3 pounds of coffee in each can, even if the mean filling weight for the population
of all cans filled is 3 pounds per can. However, as long as the population mean filling weight is at least
3 pounds per can, the rights of consumers will be protected. Thus, the TC interprets the label
information on a large can of coffee as a claim by Hilltop that the population mean filling weight is at
least 3 pounds per can. We will show how the TC can check Hilltop's claim by conducting a lower tail
hypothesis test.

0 = 3 lbm Suppose sample of n=36 coffee cans is selected. From the previous studies

it’s known that  = 0.18 lbm
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One-tailed Test: Example
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H0:   3

Ha:  < 3

0 = 3 lbm

no action

legal action

Let’s say: in the extreme case, when =3, we would like to be 99% sure that we make no

mistake, when starting legal actions against Hilltop Coffee. It means that selected

significance level is  = 0.01

Suppose sample of n = 36 coffee cans is selected and m = 2.92 is observed.

From the previous studies it’s known that  = 0.18 lbm

OKshould be testes
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||
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00
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mm
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||
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||
mm

||
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||
mm

Let’s find the probability of observation m for all possible 3. We start from an extreme case (=3) and then

probe all possible >3. See the behavior of the small probability area around measured m. What you will get if
you summarize its area for all possible 3 ?

P(m) for all possible 0 is equal to P(x<m) for an extreme case of =0
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The probability of having   3,

if m = 2.92 is observed

In other words, red area characterizes the probability of the null hypothesis.

…well, the statement, maybe, is not completely correct, but it helps get an idea.

To be completely correct, the red area gives us a probability of making an error

when rejecting the null hypothesis, or the p-value.

p-value
A probability, computed using 
the test statistics, that measures 
the support (or lack of support) 
provided by the sample for the 
null hypothesis. It is a probability 
of making the error of Type I

# assumed population mean 

mu0 = 3

# observed sample mean

m = 2.92

# known population st.dev.

sigma = 0.18

# sample size

n = 36

## standard error

se = sigma / sqrt(n)

## p-value

pnorm(m-mu0, mean = 0, sd = se)
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Two-tailed Test
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Two-tailed test
A hypothesis test in which rejection of the null hypothesis occurs for values of the test 
statistic in either tail of its sampling distribution. 

H0:  =  0

Ha:    0

0.95

0.025 0.025

/2 = /2 =
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 is Unknown (summary)
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if  in unknown:

 → s

z → t

 Lower Tail Test Upper Tail Test Two-Tailed Test 

Hypotheses 
00 :  H  

0:  aH  

00 :  H  

0:  aH  

00 :  H  

0:  aH  

Test Statistic 

ns

m
t 0  

ns

m
t 0  

ns

m
t 0  

Rejection Rule: 

p-Value Approach 

Reject H0 if  

p-value   

Reject H0 if  

p-value   

Reject H0 if  

p-value   

Rejection Rule: 

Critical Value Approach 

Reject H0 if  

t  –t 

Reject H0 if  

t  t 

Reject H0 if  

2
tt   or if  

2
tt   

 

Excel:
m = AVERAGE(…)
n = number of experiments
σ = population standard deviation
0 = population mean (constant)
z = (m- 0)/ σ *SQRT(n)
p-value = T.DIST(-ABS(z), n-1, true)

# x  put in your data

t.test(x, mu=1,

alternative ="two.sided")

# other hypotheses  "less", "greater"

ns

m
t 0
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HYPOTHESIS TESTING FOR THE MEAN
One Tail Test vs. Two Tail Test
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There is a raging controversy (for about the last hundred years) on whether or not it is ever 
appropriate to use a one-tailed test. The rationale is that if you already know the direction of the 
difference, why bother doing any statistical tests. While it is generally safest to use a two-tailed 
tests, there are situations where a one-tailed test seems more appropriate. The bottom line is 
that it is the choice of the researcher whether to use one-tailed or two-tailed research questions. 

Hypothesis

testing

Data 

A priori  

information 

about  and 0

Two Tails

One Tail

2p-value(1 tail) = p-value(2 tails)
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Example
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The number of living cells in 5 wells under some conditions is given in the 

table, with an average value of 4705. In a reference literature source authors 

claimed a mean quantity of 5000 living cells under the same conditions. Is our 

result significantly different?

One Tail

H0: µ ≥ 5000

Ha: µ < 5000

Let’s use =0.05

m = AVERAGE(A2:A6)
s = STDEV.S(A2:A6)
0 = 5000
n = 5
t = (m- 0)/s*SQRT(n)
p-value1 = T.DIST(-ABS(t); n-1; true)
p-value2 = 2*T.DIST(-ABS(t); n-1; true)

ns

m
t 0

Well Cells

1 5128

2 4806

3 5037

4 4231

5 4322

n 5

mean 4704.8

stdev 409.49

mu 5000

t -1.612

p-value 2 t 0.1823

p-value 1 t 0.0911

Two Tails

H0: µ = 5000

Ha: µ  5000

Let’s use =0.05

x = c(5128,4806,5037,4231,4322)

pv1 = t.test(x, mu=5000,alternative="less")

pv2 = t.test(x, mu=5000,alternative ="two.sided")
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Hypotheses for Proportions
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For the proportions (in R):
1) if sample is large (np>5 and n(1-p)>5) 

you can use prop.test()
2) otherwise: binom.test()

Proportions

 – population proportion

p – experimental proportion

0 – tested proportion

 Lower Tail Test Upper Tail Test Two-Tailed Test 

Hypotheses 
00 :  H  

0:  aH  

00 :  H  

0:  aH  

00 :  H  

0:  aH  

Test Statistic 

n

p
z

)1( 00

0








  

n

p
z

)1( 00

0








  

n

p
z

)1( 00

0








  

Rejection Rule: 

p-Value Approach 

Reject H0 if  

p-value   

Reject H0 if  

p-value   

Reject H0 if  

p-value   

Rejection Rule: 

Critical Value Approach 

Reject H0 if  

z  – z 

Reject H0 if  

z  z 

Reject H0 if  

2
zz   or if 

2
zz   

 

sp = SQRT(0 *(1- 0) / n) 
z = (p- 0)/sp

pval = *NORM.S.DIST(-ABS(z), TRUE)

prop.test(x,n,p,…) # chi2 approx

binom.test(x,n,p,…)# exact test

n   number of observations

p   experimental proportion

0  tested proportion

  number of tails



Lecture 2. Testing hypotheses

HYPOTHESES FOR ONE SAMPLE
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Summary

Formulate 

Hypotheses 

Mean

µ <>= 0 (const)Proportion 

 <>= 0 (const)

n

p
z

)1( 00

0










Standard deviation 

 is known
Standard deviation 

is unknown (use s)

Calculate statistics z Calculate statistics t

n

m
z



0


n
s

m
t 0

Calculate p-value

# large samples only

= prop.test()

# any samples

= binom.test()

p-value < 
 Reject H0

Results are significantly 
different from the expected

p-value > 
 Accept H0

Results are not significantly 
different from the expected

= t.test()

 = 1 for “</>” hypotheses (one tail)

 = 2 for “=” hypothesis (two tails)

=  * pnorm(-abs(z))
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HYPOTHESES
Power: how to control Type II Error
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Type I error
The error of rejecting H0 when it is true

Type II error
The error of accepting H0 when it is false

False Positive,

 error

False Negative,

 error

poor specificity

poor sensitivity

Level of significance
The probability of making a Type I error when 
the null hypothesis is true as an equality
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HYPOTHESES
Power Curve
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Probability to truly

reject H0 when H0 is

false.

H0:   0

Ha:  < 0

(at extreme case)

Ha is true as  < 0
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HYPOTHESES
Power Curve
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Power curve
A graph of the probability of rejecting H0 for 
all possible values of the population 
parameter not satisfying the null hypothesis. 
The power curve provides the probability of 
correctly rejecting the null hypothesis

Power 
The probability of correctly rejecting H0

when it is false, power = 1-
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HYPOTHESES about MEANS for TWO SAMPLES
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Independent and matched samples

Hypotheses about the means of two samples

Hypotheses about the two proportions
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TWO POPULATIONS
Independent Samples
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Independent samples 
Samples are selected from two populations in such a way that the elements making up 
one sample are chosen independently of the elements making up the other sample.

Weight

Height

Smoking

http://upload.wikimedia.org/wikipedia/commons/5/54/ALaParisienneHiver1913-1914Page3TAILLEURsur_fantaisie.png
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TWO POPULATIONS
Matched (paired) Samples
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Matched samples 
Samples, in which each data value of one sample is matched with a corresponding 
data value of the other sample.

Analysis

Before treatment After treatment



Lecture 2. Testing hypotheses

MEANS OF TWO POPULATIONS
Independent Samples: Example

43

mice.xls 

Q1: Is body weight significantly 

different for males and females?

Q2: Is weight change significantly 

different for males and females?

f m

1
0

2
0

3
0

4
0

Final body weights (g)

10 20 30 40 50

0
.0

0
0
.0

4

N = 394   Bandw idth = 1.499

D
e
n
s
ity

Body weight distributions

f m

0
.9

1
.0

1
.1

1
.2

1
.3

Weights change (g)

0.8 0.9 1.0 1.1 1.2 1.3 1.4

0
1

2
3

4
5

N = 394   Bandw idth = 0.02154

D
e
n
s
ity

Distributions of weight change

f m

2
0

6
0

1
0
0

Bleeding time (g)

0 50 100 150 200

0
.0

0
0

0
.0

1
0

0
.0

2
0

N = 381   Bandw idth = 5.729

D
e
n
s
ity

Distributions of bleeding times

Q3: Is bleeding time significantly 

different for males and females?

outliers 

are 

removed 

from 

boxplots
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10 20 30 40 50

0
.0

0
0
.0

4
0
.0

8

N = 396   Bandw idth = 1.249

D
e
n
s
ity

Body weight

15 20 25 30

0
.0

0
.4

0
.8

1
.2

Mean body weight

m

f(
m

)

0.6 0.8 1.0 1.2 1.4

0
1

2
3

4
5

N = 396   Bandw idth = 0.02198

D
e
n
s
ity

Weight change

1.06 1.08 1.10 1.12 1.14

0
2
0

4
0

6
0

8
0

Mean weight change

m

f(
m

)

0 50 100 150 200

0
.0

0
0

0
.0

1
0

0
.0

2
0

N = 381   Bandw idth = 5.729

D
e
n
s
ity

Bleeding time

50 55 60 65 70

0
.0

0
0
.1

0
0
.2

0

Mean bleeding time

m

f(
m

)

Q1: Is body weight for males and 

females significantly different?

Q2: Is weight change for males and 

females significantly different?

Q3: Is bleeding time significantly 

different for males and females?
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HYPOTHESES
Theory
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H0: 1 = 2

Ha: 1  2

Two tail hypothesis

H0: 1  2

Ha: 1 < 2

One tail hypothesis

H0: 1  2

Ha: 1 > 2
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COMPARING MEANS
Theory
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As we know how to work with standard hypotheses (comparison with

constant 0), let us transform our hypothesis:

H0:  = 0

Ha:   0

H0: 1 = 2

Ha: 1  2

H0: 2  1 = 0

Ha: 2  1  0

To use it, we need to know what is the distribution of D = m2  m1

Distribution of sum or difference of 2 normal random variables
The sum/difference of 2 (or more) normal random variables is a normal random variable 
with mean equal to sum/difference of the means and variance equal to SUM of the 
variances of the compounds.

Variables m1 m2 m2 – m1 

Means 1 2 2  – 1 

Variances 1
2
 2

2
 1

2 
+ 2

2
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COMPARING MEANS
Theory
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H0: 2  1 = D0

Ha: 2  1  D0

2

2

2

1

2

1

12 nn
mm


 

120 mmD 

2

2

2

1

2

1

12 n

s

n

s
s mm 

120  D

Statistics to be used for hypothesis testing:

if  is known: z-statistics

2

2

2

1

2

1

012

nn

Dmm
z







2

2

2

1

2

1

012

n

s

n

s

Dmm
t






if  is unknown: t-statistics

This is what we call a t-test !!!
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Unpaired t-test: Algorithm
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H0: 2  1 = D0

Ha: 2  1  D0

120 mmD 

2

2

2

1

2

1

12 n

s

n

s
s mm 

1. Build the statistics to be used for hypothesis testing:

2

2

2

1

2

1

012

n

s

n

s

Dmm
t






t-distribution has following degrees of freedom:

Usually D0 = 0

2

2

2

2

2

2

1

2

1

1

2

2

2

2

1

2

1

1

1

1

1








































n

s

nn

s

n

n

s

n

s

df

 
 
 4

2

4

1

22

2

2

11
ss

ss
ndf






2. Calculate the p-value

= T.TEST (data1, data2, 2, 3)

(n1+n2)/2 < df < n1+n2

. Or simply do:

t.test(x, y)!= T.DIST(ABS(t), df, 2)

pt(t,df)
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1.06 1.08 1.10 1.12 1.14

0
4

0
8

0

Mean weight change

m

f(
m

)

Q2: Is the mean of weight change

significantly different for males and females? 

mice

f m

0
.9

1
.0

1
.1

1
.2

1
.3

Weights change (g)

0.8 0.9 1.0 1.1 1.2 1.3 1.4

0
1

2
3

4
5

N = 394   Bandwidth = 0.02154

D
e

n
s
it
y

Distributions of weight change

p-value = 0.0014

# slow way

x = Mice$Weight.change[Mice$Sex == "f"]

y = Mice$Weight.change[Mice$Sex == "m"]

t.test(x,y)

# fast way

t.test(Mice$Weight.change ~ Mice$Sex)

# get p-value

t.test(…)$p.value
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PAIRED T-TEST
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Unpaired test
= T.TEST (array1, array2, 2, 3)

Paired test
= T.TEST (array1, array2, 2, 1)

bloodpressure

Subject BP before BP after

1 122 127

2 126 128

3 132 140

4 120 119

5 142 145

6 130 130

7 142 148

8 137 135

9 128 129

10 132 137

11 128 128

12 129 133

Systolic blood pressure (mmHg)

The systolic blood pressures of n=12 women between the ages of 20 and 35

were measured before and after usage of a newly developed oral contraceptive.

Q: Does the treatment affect 

the systolic blood pressure?

Test p-value

unpaired 0.414662

paired 0.014506

Paired t-test
In a paired t-test, instead of testing H0: 2  1 = 0, use following steps:

1. Build a new random value y = x 1 - x 2 (subtract matched values).
2.  Test whether one-sample mean y = 0

t.test(x, y, 

paired = TRUE)

BP = read.table( 

"http://edu.modas.lu/data/txt/

bloodpressure.txt", 

sep="\t", header=TRUE)

t.test(BP$BP.before,

BP$BP.after, 

paired = TRUE)
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H0: 1 = 2

Ha: 1  2 2

22

1

11 )1()1(
21 n

pp

n

pp
pp







Pooled estimator of 
An estimator of a population proportion is obtained by
computing a weighted average of the point estimators obtained
from two independent samples. 21

2211

nn

pnpn
p


















21

11
)1(

21 nn
pppp
















21

21

11
)1(

nn
pp

pp
z

= 2*NORM.S.DIST(-ABS(z),TRUE)

H0: 1 – 2 = 0

Ha: 1 – 2  0

prop.test(x = c(x1,x2), 

n = c(n1,n2))
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COMPARING PROPORTIONS
Example

= 2*NORM.S.DIST(-ABS(z),TRUE)
















21

21

11
)1(

nn
pp

pp
z

21

2211

nn

pnpn
p






mice.xls Q: Is the male proportion significantly different 

in these mouse strains (0.47 and 0.65)?

SWR/J MA/MyJ

f f

f f

f f

f f

f f

f f

f f

f f

f m

f m

m m

m m

m m

m m

m m

m m

m m

m m

m m

m

m

m

m

SWR/J MA/MyJ pooled

count male 9 15 24

n 19 23 42

p 0.474 0.652 0.571

z -1.16

p-val 0.244658997

# no correction (approx):

prop.test(x = c(9,15), 

n = c(19,23),

correct = FALSE)

# with correction:

prop.test(x = c(9,15), 

n = c(19,23))

Pooled proportion

- approximate!

p-value = 0.3952
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Non-parametric unpaired test

Mann-Whitney-Wilcoxon U-test

Non-parametric paired test

Wilcoxon Signed Rank Test
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Parametric and Non-parametric Measures & Tests
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Non-parametric measures
A statistical measure that does not depend on particular data distribution. 
Non-parametric statistics / tests are usually performed on ranks.
Non-parametric procedures are more robust to outliers but less powerful than parametric ones.

parametric non-parametric

Mean

Standard deviation

Pearson correlation

Median

MAD (median 
absolute deviation)

Spearman correlation

Non-paired (simple) t-test Mann-Whitney test

Paired t-test Wilcoxon signed rank test
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NON-PARAMETRIC TESTS
Mann-Whitney-Wilcoxon U-test
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Non-paired (simple) t-test Mann-Whitney test

Psy Soc

80 90

95 30

65 65

75 60

60 55

80 70

85 70

90 35

75 75

40 30

t-Test: 0.06H0: 1 = 2

Ha: 1  2

Number of students on psychology and sociology

1. Create ranks for joint data and calculate sum 

for ranks for each dataset (R1,R2)

2. Calculate U1 and U2

3. Take U = minimum (U1,U2)

4. Calculate z-statistics

5. Get p-value from z-stat  by normal distribution

𝒛 =
𝑼−

𝒏𝟏𝒏𝟐
𝟐

𝒏𝟏𝒏𝟐 𝒏𝟏 + 𝒏𝟐 + 𝟏
𝟏𝟐

𝑼𝒊 = 𝒏𝟏𝒏𝟐 +
𝒏𝒊 𝒏𝒊 + 𝟏

𝟐
− 𝑹𝒊

In Excel use for rank:
RANK.AVG(x,TAB,1)

In Excel:
2* NORM.S.DIST(z,TRUE)

wilcox.test(x,y)
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Non-paired (simple) t-test Mann-Whitney test

𝒛 =
𝑼−

𝒏𝟏𝒏𝟐
𝟐

𝒏𝟏𝒏𝟐 𝒏𝟏 + 𝒏𝟐 + 𝟏
𝟏𝟐

𝑼𝒊 = 𝒏𝟏𝒏𝟐 +
𝒏𝒊 𝒏𝒊 + 𝟏

𝟐
− 𝑹𝒊

Psy Soc rank Psy Soc

80 90 15.5 18.5 Medians 77.5 62.5

95 30 20 1.5 SumRank 131.5 78.5

65 65 8.5 8.5 n= 10 10

75 60 13 6.5 U1, U2 23.5 76.5

60 55 6.5 5 U= 23.5

80 70 15.5 10.5 z= -2.00321

85 70 17 10.5 p-val= 0.045155

90 35 18.5 3

75 75 13 13

40 30 4 1.5

R1, R2

psy = c(80, 95, 65, 75,

60, 80, 85, 90, 75, 40)

soc = c(90, 30, 65, 60,

55, 70, 70, 35, 75, 30)

wilcox.test(psy,soc)

p-value = 0.04851
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Paired t-test Wilcoxon signed rank test

H0: 1 = 2

Ha: 1  2
Non significant… ???

Procedure for Wilcoxon (Siegel method):

1. Make difference between columns

2. Calculate rank for differences

3. Sum up ranks for positive and negative 

differences: s+ and s-. Now T = min(s+, s- )

4. Calculate z-statistics and use standard z-test:

paired t-Test p-value= 0.165before after

12 412

42 312

31 63

462 632

1 0

25 20

63 124

754 5356

12 83

34 1245

In Excel use for rank:
RANK.AVG(diff,DIFF,1)

𝒛 =
𝑻 −

𝒏 𝒏 + 𝟏
𝟒

𝒏 𝒏 + 𝟏 𝟐𝒏 + 𝟏
𝟐𝟒

wilcox.test(x,y, paired=TRUE)
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Paired t-test Wilcoxon signed rank test

𝒛 =
𝑻 −

𝒏 𝒏 + 𝟏
𝟒

𝒏 𝒏 + 𝟏 𝟐𝒏 + 𝟏
𝟐𝟒

before after diff rank

12 412 400 8

42 312 270 7

31 63 32 3

462 632 170 6

1 0 -1 2

25 20 -5 1

63 124 61 4

754 5356 4602 10

12 83 71 5

34 1245 1211 9

s+= 52

s+= 3

T = 3

z = -2.49727

pval(2t)= 0.012515

This is an approximate method. To increase power, use R

s+ = SUMIF(diff;">0";rank)
s- = SUMIF(diff;"<0";rank)

S-

before = c(12, 42, 31,

462, 1, 25, 63, 754,

12, 34)

after = c(412, 312, 63,

632, 0, 20, 124, 5356,

83, 1245)

wilcox.test(before,

after,

paired = TRUE)

p-value = 0.009766
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Correction for multiple testing
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False Positive,

 error

False Negative,

 error

Probability of an error in a multiple test: 

1–(0.95)number of comparisons

n.o.c = 10  p(error) = 0.4

n.o.c=100  p(error) = 0.99
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Example

http://www.xkcd.com/882/
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False discovery rate (FDR)
FDR control is a statistical method used in multiple-hypothesis testing to correct for 
multiple comparisons. FDR controls the expected proportion of incorrectly rejected 
null hypotheses (type I errors) in a list of rejected hypotheses.

 Population Condition  

 H0 is TRUE H0 is FALSE Total 

Accept H0  

(non-significant) 
U T m – R 

Reject H0 

(significant) 
V S R 

C
o

n
cl

u
si

o
n

 

Total m0 m – m0 m 

 













SV

V
EFDR
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Assume we need to perform m = 100 comparisons, 

and select maximum FDR =  = 0.05
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Assume we need to perform m = 100 comparisons, 

and select maximum FDR =  = 0.05

k – is rank of p-value (order #)













SV

V
EFDR


m

k
P k )(


k

mP k )(

Expected value for FDR <  if
Benjamini-Hochberg 

(FDR)

)(kmP

Other Methods

Bonferroni – simple, but too stringent, not recommended

Holm – a more powerful and less stringent version of Bonferroni (ok)

𝑚 − 𝑘 + 1 𝑃(𝑘) ≤ 𝛼

p.adjust(pv, 

method="fdr")

p.adjust(pv, 

method="holm")
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Generate 6 columns of normal random variables (1000 points/candidates in each).

Consider the first 3 columns as “treatment”, and the next 3 columns as “control”. 

Using t-test calculate p-values b/w “treatment” and “control” group. How many 

candidates have p-value<0.05 ?

Calculate FDR. How many candidates you have now?

0,679904

0,686248

0,895658

0,769638

0,522048

0,351253

0,382015

0,367332

0,760674

0,12033

0,358775

0,245876

0,123687

0,409657

0,492513

0,033763

0,126553

0,616665

0,268413

0,185728

0,431017

0,121842

0,484187

0,304597

0,166648

0,81898

0,679149

0,048449

0,61131

0,207696

0,485157

0,430718

0,157364

0,435908

0,979462

0,199573

0,190432

0,647847

0,479265

0,118313

0,703477

0,441688

0,086932

0,411063

0,579393

0,291117

0,214041

0,775104

0,182519

0,071618

0,107156

0,306569

0,199346

0,104424

0,040545

0,193674

0,742731

0,603062

0,666317

0,264127

0,049353

0,214152

0,099047

0,719146

0,458179

0,566126

0,284843

0,17299

0,607582

0,175589

0,272751

0,386326

0,683563

0,295633

0,871761

0,425037

0,084177

0,821113

0,586654

0,156013

0,83746

0,623828

0,978044

0,843034

0,366474

0,454333

0,821698

0,190104

0,88838

0,418744

0,910023

0,98134

0,405637

0,410174

0,974681

0,568173

0,149458

0,970156

0,145405

0,020269

Candidates.

5% are false

Same candidates.

Just sorted
0,020269

0,033763

0,040545

0,048449

0,049353

0,071618

0,084177

0,086932

0,099047

0,104424

0,107156

0,118313

0,12033

0,121842

0,123687

0,126553

0,145405

0,149458

0,156013

0,157364

0,166648

0,17299

0,175589

0,182519

0,185728

0,190104

0,190432

0,193674

0,199346

0,199573

0,207696

0,214041

0,214152

0,245876

0,264127

0,268413

0,272751

0,284843

0,291117

0,295633

0,304597

0,306569

0,351253

0,358775

0,366474

0,367332

0,382015

0,386326

0,405637

0,409657

0,410174

0,411063

0,418744

0,425037

0,430718

0,431017

0,435908

0,441688

0,454333

0,458179

0,479265

0,484187

0,485157

0,492513

0,522048

0,566126

0,568173

0,579393

0,586654

0,603062

0,607582

0,61131

0,616665

0,623828

0,647847

0,666317

0,679149

0,679904

0,683563

0,686248

0,703477

0,719146

0,742731

0,760674

0,769638

0,775104

0,81898

0,821113

0,821698

0,83746

0,843034

0,871761

0,88838

0,895658

0,910023

0,970156

0,974681

0,978044

0,979462

0,98134

Top 5% 

selected

???

# create dataset

X = matrix(rnorm(1000*6),

nrow=1000, ncol=6)

# test 1000 hypotheses

pv = 1

for (i in 1:nrow(X)){

res=t.test(X[i,1:3],

X[i,4:6])

pv[i]=res$p.value

}

# number of pv < 0.05

sum(pv<0.05)

# FDR adjustment

fdr = p.adjust(pv,"fdr")

sum(fdr<0.05)
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all_data
Acute lymphoblastic leukemia (ALL), is a form

of leukemia, or cancer of the white blood cells

characterized by excess lymphoblasts.

all_data.xls contains the results of full-transcript profiling for ALL patients

and healthy donors using Affymetrix microarrays. The data were

downloaded from the ArrayExpress repository and normalized. The

expression values in the table are in log2 scale.

Let us analyze these data:

Calculate log2-ratio (logFC) for each gene (simply subtract means)

Calculate the p-value based on the t-test for each gene

Perform the FDR-based adjustment of the p-value. 

Calculate the number of up and down-regulated genes with FDR<0.01

How would you take into account logFC?

Make volcano plot: x = logFC, y = -log(adj.pvalue)

Example score:

  logFCvaluepadjscore  ..log

http://edu.modas.lu/data

FDR (adj. p-value) is a main measure. Other only help…

http://edu.modas.lu/data
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Thank you for your 

attention

http://upload.wikimedia.org/wikipedia/commons/5/54/ALaParisienneHiver1913-1914Page3TAILLEURsur_fantaisie.png

