LUXEMBOURG INSTITUTE OF HEALTH

Multiomics Data Science Group (MODAS)
Department of Cancer Research, LIH
Bioinformatics Platform (BIOINFO)
Department of Medical Informatics, LIH

BIOSTATISTICS for PhDs

Lecture 2
 Testing Hypotheses

Email: petr.nazarov@lih.lu
Skype: pvn.public

LUXEMBOURG INSTITUTE OF HEALTH

COURSE OVERVIEW

Outline (to be updated during the course)

Lecture 1, 2024-02-05

- numerical measures (location/variability/association), parametric/nonparametric
- basic summary and visualization in R: barplot, boxplot, scatter plot
- z-score, detection of outliers
- continuous distributions (normal, Student, $\left.\chi^{2}, ~ F\right)$, linkage to probability
- sampling distribution, methods for sampling
- Lecture 2, 2024-02-19
- interval estimations for mean and proportion
\rightarrow hypotheses testing for mean(s), p-value, tails
\rightarrow number of samples
\rightarrow power of a test
\rightarrow non-parametric tests
multiple comparisons
R Studio
https://posit.co/downloads/

Lecture 3, 2024-03-04

- interval estimations and hypotheses for variance
- model fitting and test for independence
- linear models, ANOVA, posthoc analysis
- simple and multiple linear regression
- factors in linear regression
- logistic regression

Let's work at a comfortable speed!

Materials and other courses:
http://edu.modas.lu

Lecture 4, 2024-03-18 (please, propose!)
\rightarrow omics data analysis?
survival analysis?
clustering?

- more practical exercise?

INTERVAL ESTIMATES: Means and Proportions

Interval estimates, confidence intervals for means
Confidence intervals for proportions
Interval estimation in the case of random functions

NUMERICAL MEASURES

Population and Sample

Population parameter A numerical value used as a summary measure for a population of size N (e.g., the population mean μ, variance σ^{2}, standard deviation σ)						Sample statistic (parameter) A numerical value used as a summary measure for a sample of size n (e.g., the sample mean m, the sample variance s^{2}, and the sample standard deviation s)		

Definitions

Interval estimate

An estimate of a population parameter that provides an interval believed to contain the value of the parameter. The interval estimates have the form: point estimate \pm margin of error.

Margin of error

The \pm value added to and subtracted from a point estimate in order to develop an interval estimate of a population parameter.

σ known
The condition existing when historical data or other
information provides a good value for the population
standard deviation prior to taking a sample. The interval
estimation procedure uses this known value of σ in
computing the margin of error.

The condition existing when historical data or other information provides a good value for the population standard deviation prior to taking a sample. The interval estimation procedure uses this known value of σ in computing the margin of error.

Distribution of m

> σ unknown (usual situation)
> The condition existing when no good basis exists for estimating the population standard deviation prior to taking the sample. The interval estimation procedure uses the sample standard deviation s in computing the margin of error.

We will consider theory for σ-known cases and then generalize to σ-unknown

INTERVAL ESTIMATION: σ KNOWN

Interval Estimation for the Mean

INTERVAL ESTIMATION: σ KNOWN

Confidence Interval

Confidence level

The confidence that is associated with an interval estimate. For example, if an interval estimation procedure provides intervals such that 95% of the intervals formed using the procedure will include the population parameter, the interval estimate is said to be constructed at the 95% confidence level. Confidence =1- α

Confidence interval

Another name for an interval estimate.

$$
\mu=m \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

For 95% confidence $\alpha=0.05$, which means that in each tail we have 0.025 .
Corresponding $z_{\alpha / 2}=1.96$

```
| = CONFIDENCE.NORM(alpha, \sigma, n)
* = -NORM.S.INV (alpha/2)*\sigma/SQRT (n)
```


alpha $=1$ - confidence

```
m = ... #mean
s = ... #st.dev
n = ... #number of observations
a = ... #alpha
me = -qnorm(0.025)*s/sqrt(n)
sprintf("mu= %g +/- %g",m,me)
```


INTERVAL ESTIMATION: σ KNOWN

Example: Interval Estimation for the Mean

An engineer is testing a new measuring device. He tries to put $500 \mu \mathrm{l}$ of water into tubes and then measure the resulting quantity. Based on 36 measurements she estimated the average volume of $498 \mu \mathrm{l}$. From technical documentation for the device she learnt that the standard deviation of the volume is around $5 \mu \mathrm{l}$. Calculate the 95% and 99% confidence intervals for the volume the researcher takes on average. Is the desired volume of $500 \mu \mathrm{l}$ in the confidence intervals?

$$
\mu=m \pm m e r r o r=m \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$


```
m = 498
s = 5
n=36
a = 0.05
me = -qnorm(a/2)*s/sqrt(n)
sprintf("mu = %g +/- %g",m,me)
```

95\% CI: $\mu=498+/-1.63=[496.4$.. 499.6]
99\% CI: $\mu=498+/-2.14=[495.8$.. 500.1]

INTERVAL ESTIMATION: σ UNKNOWN

Assume that we have a sample of 20 mice and would like to estimate an average size of a mice in population.

INTERVAL ESTIMATION: σ UNKNOWN

Interval Estimation for the Mean in Case of σ Unknown

$$
\begin{aligned}
& \mathrm{m}=\ldots \text { \#mean } \\
& \mathrm{s}=\ldots \text { \#st.dev } \\
& \mathrm{n}=\ldots \text { \#number of observations } \\
& \mathrm{a}=\ldots \text { \#alpha } \\
& \mathrm{me}=-\mathrm{qt}(0.025, \mathrm{n}-1) * \mathrm{~s} / \text { sqrt(n) } \\
& \text { sprintf("mu= \%g +/- \%g",m,me) }
\end{aligned}
$$

Or simply:

t.test (x)	$\#$ show
t.test (x) \$conf.int	$\#$ get

 n)
 for \(95 \%\) confidence \(z_{0.025}=1.96\)
    ```
Variant 1:
```

Variant 1:
calculate n and p
calculate n and p

* =CONFIDENCE . NORM(
* =CONFIDENCE . NORM(
alpha,
alpha,
SQRT (p* (1-p)),

```
    SQRT (p* (1-p)),
```

```
Variant 2:
```

Variant 2:
- calculate \boldsymbol{n} and \boldsymbol{p}
- calculate \boldsymbol{n} and \boldsymbol{p}
- calculate st.error $\sigma_{p}=\operatorname{SQRT}(p *(1-p) / n)$
- calculate st.error $\sigma_{p}=\operatorname{SQRT}(p *(1-p) / n)$
\Rightarrow calculate $\mathbf{z}_{\alpha / 2}$ statistics
\Rightarrow calculate $\mathbf{z}_{\alpha / 2}$ statistics
=-NORM.S.INV (alpha/2)
=-NORM.S.INV (alpha/2)
$=z_{\alpha / 2} * \sigma_{p}$

```
    \(=z_{\alpha / 2} * \sigma_{p}\)
```

p = ... \#proportion
n $=$... \#number of observations
a = ... \#alpha
$s p=s q r t(p *(1-p) / n)$
me $=$-qnorm(a/2)*sp
sprintf("pi= \%g +/- \%g",p,me)
\# exact
binom.test(p*n, n)

```
# simple way 1: p is known
```


simple way 1: p is known

prop.test(p*n, n)
prop.test(p*n, n)

simple way 2:

simple way 2:

x - logical vector

x - logical vector

prop.test(sum(x), length(x))

```
prop.test(sum(x), length(x))
```

$$
\pi=p \pm z_{\alpha / 2} \sqrt{\frac{p(1-p)}{n}}
$$

1. The normal distribution is applicable only when enough data points are observed. The rule of thumb is: $n p \geq 5$ and $n(1-p) \geq 5$
2. The maximal marginal error is observed when $\mathrm{p}=0.5$
3. The estimation of the sample size can be obtained:

$$
n=\frac{z_{\alpha / 2}^{2} p(1-p)}{E^{2}}
$$

where p is a best guess for π or the result of a preliminary study

LUXEMBOURG INSTITUTE OF HEALTH

INTERVAL ESTIMATION

Example: Population Proportion

pancreatitis

Pan $=$

read.table("http://edu.modas.lu/data/txt/ pancreatitis.txt", sep="\t", header=TRUE, stringsAsFactors = TRUE)

1. Define a 95% confidence interval for never-smoking proportion of people coming to a hospital.
2. How many patients you would need to have error (E) less than 1%

Think whether you would like to use pooled groups (other, pancreatitis) or make independent analysis for each? Why?

| $n=$ | 217 |
| :--- | ---: |
| $n($ Never $)=$ | 56 |
| $p=$ | 0.258065 |
| st.error (st.dev.prop) $=$ | 0.029704 |
| cut off for 95\%, z(a/2) $=$ | 1.959964 |
| Margin of Error= | 0.058219 |

$$
\begin{aligned}
& 1 \pi=p \pm z_{\alpha / 2} \sqrt{\frac{p(1-p)}{n}} \\
& 2 n=\frac{z_{\alpha / 2}^{2} p(1-p)}{E^{2}}
\end{aligned}
$$

```
n = sum(Pan$Disease == "other")
```

n = sum(Pan$Disease == "other")
x = sum(Pan$Smoking == "Never" \&
x = sum(Pan$Smoking == "Never" &
 Pan$Disease == "other")
Pan\$Disease == "other")
p = x/n
p = x/n
a=0.05
a=0.05

method 1: manual calculation

method 1: manual calculation

sp = sqrt(p* (1-p)/n)
sp = sqrt(p* (1-p)/n)
me = -qnorm(a/2)*sp
me = -qnorm(a/2)*sp
sprintf("pi= %g +/- %g",p,me)
sprintf("pi= %g +/- %g",p,me)

method 2: prop.test

method 2: prop.test

prop.test(x,n,conf.level=1-a)\$conf.int

```
prop.test(x,n,conf.level=1-a)$conf.int
```

```
E = 0.01
```

E = 0.01

```
E = 0.01
n1 = qnorm(a/2)^2 * p * (1-p) / E^2
n1 = qnorm(a/2)^2 * p * (1-p) / E^2
n1 = qnorm(a/2)^2 * p * (1-p) / E^2
n1
```

n1

```
n1
```

LUXEMBOURG INSTITUTE OF HEALTH

INTERVAL ESTIMATES

Advice 2
if $n>100$ you can, in principle, use z-statistics instead of t-statistics (error will be $<1.5 \%$)

INTERVAL ESTIMATES

Determining the Sample Size

Let's focus on another aspect: how to select a proper number of experiments.

$$
\begin{aligned}
& \mu=m \pm E(n, \sigma) \\
& E(n, \sigma)=E \\
& n-?
\end{aligned}
$$

$$
\begin{aligned}
& E=z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \\
& n=\frac{z_{\alpha / 2}^{2} \sigma^{2}}{E^{2}}
\end{aligned}
$$

$$
n=\frac{z_{\alpha / 2}^{2} \sigma^{2}}{E^{2}}
$$

$$
n=\frac{z_{\alpha / 2}^{2} p(1-p)}{E^{2}}
$$

INTERVAL ESTIMATES

Summary

Alternatives:

$$
=\text { prop.test }(c(x 1, x 2), c(n 1, n 2), \text { conf.level }=1-\alpha) \quad=\text { t.test }(x, \operatorname{conf} . l \text { evel }=1-\alpha)
$$

INTERVAL ESTIMATES FOR RANDOM FUNCTIONS

Sum and Square of Normal Variables

Distribution of sum or difference of 2 normal random variables

The sum/difference of 2 (or more) normal random variables is a normal random variable with mean equal to sum/difference of the means and variance equal to SUM of the variances of the compounds.

$$
\begin{aligned}
& x \pm y \rightarrow \text { Normal distribution } \\
& E[x \pm y]=E[x] \pm E[y] \\
& \sigma_{x \pm y}^{2}=\sigma_{x}^{2}+\sigma_{y}^{2}
\end{aligned}
$$

Distribution of sum of squares on k standard normal random variables

The sum of squares of k standard normal random variables is a χ^{2} with k degree of freedom.

$$
\begin{aligned}
& \text { if } \quad x_{1}, \ldots, x_{k} \rightarrow \text { Normal distribution } \\
& \sum_{i=1}^{k} x_{i}^{2} \rightarrow \chi^{2} \quad \text { with d.f. }=k
\end{aligned}
$$

What to do in more complex situations?

$$
\frac{x}{y} \rightarrow ? \quad \sqrt{x} \rightarrow ? \quad \log (|x|) \rightarrow ?
$$

LUXEMBOURG INSTITUTE OF HEALTH

INTERVAL ESTIMATES FOR RANDOM FUNCTIONS

Terrifying Theory

Try to solve analytically?

Simplest case. $\mathrm{E}[\mathrm{x}]=\mathrm{E}[\mathrm{y}]=0$

Ratio distribution

From Wikipedia, the free encyclopedia
A ratio distribution (or quotient distribution) is a probability distribution constructed as the distribution
of the ratio of random variables having two other known distributions. Given two random variables X
and Y, the distribution of the random variable Z that is formed as the ratio
$Z=X / Y$
is a ratio distribution.

$$
p_{Z}(z)=\frac{b(z) \cdot c(z)}{a^{3}(z)} \frac{1}{\sqrt{2 \pi} \sigma_{x} \sigma_{y}}\left[2 \Phi\left(\frac{b(z)}{a(z)}\right)-1\right]+\frac{1}{a^{2}(z) \cdot \pi \sigma_{x} \sigma_{y}} e^{-\frac{1}{2}\left(\frac{\mu_{x}^{2}}{\sigma_{x}^{2}}+\frac{\mu_{y}^{2}}{\sigma_{y}^{2}}\right)}
$$

where

$$
\begin{aligned}
& a(z)=\sqrt{\frac{1}{\sigma_{x}^{2}} z^{2}+\frac{1}{\sigma_{y}^{2}}} \\
& b(z)=\frac{\mu_{x}}{\sigma_{x}^{2}} z+\frac{\mu_{y}}{\sigma_{y}^{2}} \\
& c(z)=e^{\frac{1}{2} \frac{b^{2}(z)}{a^{2}(z)}-\frac{1}{2}\left(\frac{\mu_{x}^{2}}{\sigma_{x}^{2}} \frac{\psi_{2}^{2}}{\sigma_{y}^{2}}\right)} \\
& \Phi(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} u^{2}} d u
\end{aligned}
$$

INTERVAL ESTIMATES FOR RANDOM FUNCTIONS

Practical Approach

| Experimental values (x) and control (y) were measured for an experiment. 5 replicates were performed for each. | \# | Experiment 215 | Control 83 |
| :---: | :---: | :---: | :---: |
| From previous experience, we know that the error between | 2 | 253 | 75 |
| | 3 | 198 | 62 |
| | 4 | 225 | 91 |
| | 5 | 240 | 70 |
| Q: provide an interval estimation for the fold change $\mathrm{x} / \mathrm{y}(\alpha=0.05)$ | | | |
| (*) | Mean | 226.2 | 76.2 |
| | StDev | 21.39 | 11.26 |

Let us use a numerical simulation...
$\left(^{*}\right)$ this specific case can be solved in different ways, e.g. using log transformation:

$$
\log (x / y)=\log (x)-\log (y)
$$

LUXEMBOURG INSTITUTE OF HEALTH

INTERVAL ESTIMATES FOR RANDOM FUNCTIONS

Practical Approach

| 1. Calculate standard errors from s.t.d. $\boldsymbol{s}_{\boldsymbol{x}} \rightarrow \boldsymbol{s e}_{\boldsymbol{x}}$ | $s e_{x}=\frac{s_{x}}{\sqrt{n}}$ | Mean StDev | $\begin{aligned} & 226.2 \\ & 21.39 \end{aligned}$ | $\begin{gathered} 76.2 \\ 11.26 \end{gathered}$ | Mean StDev | $\begin{gathered} 226.2 \\ 9.57 \end{gathered}$ | $\begin{aligned} & 76.2 \\ & 5.03 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

2. Generate 2 sets of 10 k normal or Student's random variables Mx and My with means of x and y and standard deviations $s e_{x}, s e_{y}$ corresponding to ones of experimental and control set (assume you perform 10000 series by $n=5$ experiments in each).
3. Build the target function: $\mathbf{f}(\mathbf{x}, \mathbf{y})$
4. Study the target function. Calculate summary, build histogram if necessary.
5. If you would like to have 95% interval,

 calculate 2.5% and 97.5% percentiles.
$\mathrm{E}\left[\mathrm{m}_{\mathrm{x}} / \mathrm{m}_{\mathrm{y}}\right] \in[2.39,3.74]$
6. If we need "prediction interval" instead of
"confidence" - use x and y instead of m_{x}, m_{y}.
for ratio $x, y>0$, you can also use log:
```
# use log-transformed data:
mx = mean(log2(x))
my = mean(\operatorname{log}2(y))
sex = sd(log2(x))/sqrt(length(x)
sex = sd(log2(x))/sqrt(length(x))
m = mx - my
s = sqrt(sex^2 + sey^2)
me1 = m + qt (0.025,5-1)*s
me1 =m+qt(0.025,5-1)*s
|^\mp@code{m}
2^me2
```

```
# enter data
x = c(215, 253,198,225,240)
y = c(83,75,62,91,70)
# means and standard errors
mx = mean (x)
my = mean (y)
sex = sd(x)/sqrt(5)
sey = sd(y)/sqrt(5)
# simulation (can try rnorm)
Mx = mx + sex*rt(10000,5-1)
My = my + sey*rt(10000,5-1)
FXY = Mx/My
# visualization
hist(FXY, 50, freq = FALSE)
lines(density(FXY) ,lwd=2,col=4)
# confidence interval for means
quantile(Mx/My,c(0.025,0.975))
```


HYPOTHESES about MEAN for ONE SAMPLE

Hypotheses
Confusion matrix: TP, FP, TN, FN and errors
Hypotheses about the mean of one sample
Hypotheses about the proportion of one sample
P-value
Power of the test

Here we continue the discussion of statistical inference by showing how hypothesis testing can be used to determine whether a statement about the value of a population parameter should or should not be rejected.
In hypothesis testing we begin by making a tentative assumption about a population parameter, i.e. by formulation of a null hypothesis.

Null hypothesis

The hypothesis tentatively assumed true in the hypothesis testing procedure, H_{0}

Alternative hypothesis
 The hypothesis concluded to be true if the null hypothesis is rejected, H_{a}

$$
\begin{aligned}
& H_{0}: \mu \leq \text { const } \\
& H_{\mathrm{a}}: \mu>\text { const }
\end{aligned}
$$

$$
\begin{aligned}
& H_{0}: \mu \geq \text { const } \\
& H_{\mathrm{a}}: \mu<\text { const }
\end{aligned}
$$

$$
\begin{aligned}
& H_{0}: \mu=\text { const } \\
& H_{\mathrm{a}}: \mu \neq \text { const }
\end{aligned}
$$

HYPOTHESES

Developing Null and Alternative Hypotheses: Example 1

Assume that the average survival time for glioblastoma patients (early state, age<50) is 18 months. You have developed a new treatment that should increase the survival time. Performing the clinical trial in order to determine the positive effect, you obtained an average survival of 20 months. You would like to ensure that this effect is real, so you perform the hypothesis testing. A research hypothesis should be stated as the alternative hypothesis as a general guideline. Hence, the appropriate null and alternative hypotheses for the study are

$$
\begin{aligned}
& H_{0}: \mu \leq 18 \\
& H_{a}: \mu>18
\end{aligned}
$$

If the sample results indicate that H_{0} cannot be rejected, researchers cannot conclude the new treatment is better. Perhaps more research and subsequent testing should be conducted. However, if the sample results indicate that H_{0} can be rejected, researchers can make the inference that $H_{a}: \mu>18$ is true. With this conclusion, the researchers gain the statistical support necessary to state that the new treatment increases survival time, and wide implementation of the treatment should be made.

Developing Null and Alternative Hypotheses: Example 2

Consider the situation of a manufacturer of soft drinks who states that it fills two-liter containers of its products with an average of at least 67.6 fluid ounces. A sample of two-liter containers will be selected, and the contents will be measured to test the manufacturer's claim. In this type of hypothesis testing situation, we generally assume that the manufacturer's claim is true unless the sample evidence is contradictory. Using this approach for the soft-drink example, we would state the null and alternative hypotheses as follows.

$$
\begin{aligned}
& H_{0}: \mu \geq 67.6 \\
& H_{a}: \mu<67.6
\end{aligned}
$$

If the sample results indicate H_{0} cannot be rejected, the manufacturer's claim will not be challenged. However, if the sample results indicate H_{0} can be rejected, the inference will be made that $H_{\mathrm{a}}: \mu<67.6$ is true. With this conclusion, statistical evidence indicates that the manufacturer's claim is incorrect and that the soft-drink containers are being filled with a mean less than the claimed 67.6 ounces. Appropriate action against the manufacturer may be considered in a court.

Developing Null and Alternative Hypotheses: Example 3

For example, on the basis of a sample of parts from a shipment just received, a quality control inspector must decide whether to accept the shipment or to return the shipment to the supplier because it does not meet specifications. Assume that specifications for a particular part require a mean length of 2 inches per part. If the mean length is greater or less than the two-inch standard, the parts will cause quality problems in the assembly operation. In this case, the null and alternative hypotheses would be formulated as follows.

$$
\begin{aligned}
& \boldsymbol{H}_{0}: \mu=\mathbf{2} \\
& \boldsymbol{H}_{a}: \mu \neq \mathbf{2}
\end{aligned}
$$

If the sample results indicate H_{0} cannot be rejected, the quality control inspector will have no reason to doubt that the shipment meets specifications, and the shipment will be accepted. However, if the sample results indicate H_{0} should be rejected, the conclusion will be that the parts do not meet specifications. In this case, the quality control inspector will have sufficient evidence to return the shipment to the supplier.

LUXEMBOURG INSTITUTE OF HEALTH

HYPOTHESES

Type I Error

Type I error

The error of rejecting H_{0} when it is true.

Type II error

The error of accepting H_{0} when it is false.

Level of significance

The probability of making a Type I error when
the null hypothesis is true as an equality, α

One-tailed test

A hypothesis test in which rejection of the null hypothesis occurs for values of the test statistic in one tail of its sampling distribution

$$
\begin{array}{ll}
\boldsymbol{H}_{0}: \mu \leq \mu_{0} & \boldsymbol{H}_{0}: \mu \geq \mu_{0} \\
\boldsymbol{H}_{\mathrm{a}}: \mu>\mu_{0} & \boldsymbol{H}_{\mathrm{a}}: \mu<\mu_{0}
\end{array}
$$

A Trade Commission (TC) periodically conducts statistical studies designed to test the claims that manufacturers make about their products. For example, the label on a large can of Hilltop Coffee states that the can contains 3 pounds of coffee. The TC knows that Hilltop's production process cannot place exactly 3 pounds of coffee in each can, even if the mean filling weight for the population of all cans filled is 3 pounds per can. However, as long as the population mean filling weight is at least 3 pounds per can, the rights of consumers will be protected. Thus, the TC interprets the label information on a large can of coffee as a claim by Hilltop that the population mean filling weight is at least 3 pounds per can. We will show how the TC can check Hilltop's claim by conducting a lower tail hypothesis test.

$$
\begin{array}{ll}
\mu_{0}=3 \mathrm{lbm} \quad \begin{array}{l}
\text { Suppose sample of } n=36 \text { coffee cans is selected. From the previous studies } \\
\text { it's known that } \sigma=0.18 \mathrm{lbm}
\end{array}
\end{array}
$$

LUXEMBOURG INSTITUTE OF HEALTH

HYPOTHESIS TESTING FOR MEAN

One-tailed Test: Example

$\mu_{0}=3 \mathrm{lbm}$
Suppose sample of $n=36$ coffee cans is selected and $m=2.92$ is observed. From the previous studies it's known that $\sigma=0.18 \mathrm{lbm}$

$$
\begin{array}{ll}
\boldsymbol{H}_{0}: \mu \geq 3 & \text { no action } \\
\boldsymbol{H}_{\mathrm{a}}: \mu<3 & \text { legal action }
\end{array}
$$

Let's say: in the extreme case, when $\mu=3$, we would like to be 99% sure that we make no mistake, when starting legal actions against Hilltop Coffee. It means that selected significance level is $\alpha=0.01$

HYPOTHESIS TESTING FOR MEAN

Let's Try to Understand...
Let's find the probability of observation m for all possible $\mu \geq 3$. We start from an extreme case ($\mu=3$) and then probe all possible $\mu>3$. See the behavior of the small probability area around measured m. What you will get if you summarize its area for all possible $\mu \geq 3$?

$P(m)$ for all possible $\mu \geq \mu_{0}$ is equal to $P(x<m)$ for an extreme case of $\mu=\mu_{0}$

HYPOTHESIS TESTING FOR MEAN

In other words, red area characterizes the probability of the null hypothesis.
...well, the statement, maybe, is not completely correct, but it helps get an idea.
To be completely correct, the red area gives us a probability of making an error when rejecting the null hypothesis, or the p-value.

p-value

A probability, computed using the test statistics, that measures the support (or lack of support) provided by the sample for the null hypothesis. It is a probability of making the error of Type I

```
# assumed population mean
mu0 = 3
# observed sample mean
m = 2.92
# known population st.dev.
sigma = 0.18
# sample size
n = 36
## standard error
se = sigma / sqrt(n)
## p-value
pnorm(m-mu0, mean = 0, sd = se)
```


HYPOTHESIS TESTING FOR THE MEAN

Two-tailed Test

Two-tailed test

A hypothesis test in which rejection of the null hypothesis occurs for values of the test statistic in either tail of its sampling distribution.
$H_{0}: \mu=\mu_{0}$ $H_{a}: \mu \neq \mu_{0}$

HYPOTHESIS TESTING FOR THE MEAN

σ is Unknown (summary)

| | Lower Tail Test | Upper Tail Test | Two-Tailed Test |
| :---: | :---: | :---: | :---: |
| Hypotheses | $H_{0}: \mu \geq \mu_{0}$ | $H_{0}: \mu \leq \mu_{0}$ | $H_{0}: \mu=\mu_{0}$ |
| | $H_{a}: \mu<\mu_{0}$ | $H_{a}: \mu>\mu_{0}$ | $H_{a}: \mu \neq \mu_{0}$ |
| Test Statistic | $t=\frac{m-\mu_{0}}{s / \sqrt{n}}$ | $t=\frac{m-\mu_{0}}{s / \sqrt{n}}$ | $t=\frac{m-\mu_{0}}{s / \sqrt{n}}$ |
| Rejection Rule: | Reject H_{0} if | Reject H_{0} if | Reject H_{0} if |
| p-Value Approach | p-value $\leq \alpha$ | p-value $\leq \alpha$ | p-value $\leq \alpha$ |
| Rejection Rule: | Reject H_{0} if | Reject H_{0} if | Reject H_{0} if
 Critical Value Approach$\quad t \leq-t_{\alpha}$ |

```
\# \(\mathrm{x} \leqslant\) put in your data
t.test(x, mu=1,
    alternative ="two.sided")
\# other hypotheses "less", "greater"
```


HYPOTHESIS TESTING FOR THE MEAN

One Tail Test vs. Two Tail Test

There is a raging controversy (for about the last hundred years) on whether or not it is ever appropriate to use a one-tailed test. The rationale is that if you already know the direction of the difference, why bother doing any statistical tests. While it is generally safest to use a two-tailed tests, there are situations where a one-tailed test seems more appropriate. The bottom line is that it is the choice of the researcher whether to use one-tailed or two-tailed research questions.

$$
2 \times p \text {-value }{ }_{(1 \text { tail }}=p-\text { value }_{(2 \text { tails })}
$$

HYPOTHESIS TESTING FOR THE MEAN

Example

The number of living cells in 5 wells under some conditions is given in the table, with an average value of 4705 . In a reference literature source authors claimed a mean quantity of 5000 living cells under the same conditions. Is our result significantly different?

| Well | Cells |
| :---: | :---: |
| 1 | 5128 |
| 2 | 4806 |
| 3 | 5037 |
| 4 | 4231 |
| 5 | 4322 |


```
x = c(5128,4806,5037,4231,4322)
pv1 = t.test(x, mu=5000,alternative="less")
pv2 = t.test(x, mu=5000,alternative ="two.sided")
```


HYPOTHESIS TESTING FOR PROPORTION

Hypotheses for Proportions

Proportions

π - population proportion
p - experimental proportion
π_{0} - tested proportion

For the proportions (in R):

1) if sample is large ($n p>5$ and $n(1-p)>5$) you can use prop.test()
2) otherwise: binom.test()
$\mathrm{n} \leftarrow$ number of observations
$\mathrm{p} \leftarrow$ experimental proportion
$\pi_{0} \leftarrow$ tested proportion
$\tau \leftarrow$ number of tails

| | Lower Tail Test | Upper Tail Test | Two-Tailed Test |
| :---: | :---: | :---: | :---: |
| Hypotheses | $H_{0}: \pi \geq \pi_{0}$ | $H_{0}: \pi \leq \pi_{0}$ | $H_{0}: \pi=\pi_{0}$ |
| | $H_{a}: \pi<\pi_{0}$ | $H_{a}: \pi>\pi_{0}$ | $H_{a}: \pi \neq \pi_{0}$ |
| Test Statistic | $z=\frac{p-\pi_{0}}{\sqrt{\frac{\pi_{0}\left(1-\pi_{0}\right)}{n}}}$ | $z=\frac{p-\pi_{0}}{\sqrt{\frac{\pi_{0}\left(1-\pi_{0}\right)}{n}}}$ | $z=\frac{p-\pi_{0}}{\sqrt{\frac{\pi_{0}\left(1-\pi_{0}\right)}{n}}}$ |
| | \sqrt{n} | \sqrt{n} | |
| Rejection Rule: | Reject H_{0} if | Reject H_{0} if | Reject H_{0} if |
| p-Value Approach | p-value $\leq \alpha$ | p-value $\leq \alpha$ | p-value $\leq \alpha$ |
| Rejection Rule: | Reject H_{0} if | | |
| Critical Value Approach | $z \leq-z_{\alpha}$ | Reject H_{0} if | |
| $z \geq z_{\alpha}$ | Reject H_{0} if | | |
| $z \leq-z_{\alpha / 2}$ or if $z \geq z_{\alpha / 2}$ | | | |

$$
\begin{aligned}
& \mathrm{s}_{\mathrm{p}}=\operatorname{SQRT}\left(\pi_{0} *\left(1-\pi_{0}\right) / \mathrm{n}\right) \\
& \mathrm{z}=\left(\mathrm{p}-\pi_{0}\right) / \mathrm{s}_{\mathrm{p}} \\
& \text { pval }=\tau^{*} \operatorname{NORM} . \operatorname{S.DIST}(-\operatorname{ABS}(z), \operatorname{TRUE})
\end{aligned}
$$

prop.test $(\mathbf{x}, \mathbf{n}, \mathbf{p}, \ldots)$ \# chi2 approx binom.test($\mathbf{x}, \mathbf{n}, \mathbf{p}, \ldots$) \# exact test

LUXEMBOURG INSTITUTE OF HEALTH

HYPOTHESES FOR ONE SAMPLE

Summary

\# any samples
= binom.test()

HYPOTHESES

```
Type I error
The error of rejecting \(H_{0}\) when it is true
```

Type II error
The error of accepting H_{0} when it is false

Level of significance

The probability of making a Type I error when
the null hypothesis is true as an equality
poor sensitivity
False Negative,
β error
Population Condition

$$
\begin{aligned}
& H_{0}: \mu \geq \mu_{0} \\
& H_{\mathrm{a}}: \mu<\mu_{0}
\end{aligned}
$$

HYPOTHESES

Power

The probability of correctly rejecting H_{0} when it is false, power = 1- β

Power curve

A graph of the probability of rejecting H_{0} for all possible values of the population parameter not satisfying the null hypothesis. The power curve provides the probability of correctly rejecting the null hypothesis

HYPOTHESES about MEANS for TWO SAMPLES

Independent and matched samples
Hypotheses about the means of two samples
Hypotheses about the two proportions

Independent samples
Samples are selected from two populations in such a way that the elements making up one sample are chosen independently of the elements making up the other sample.

TWO POPULATIONS

Matched (paired) Samples

Matched samples

Samples, in which each data value of one sample is matched with a corresponding data value of the other sample.

Before treatment

After treatment

MEANS OF TWO POPULATIONS

Independent Samples: Example

Q1: Is body weight significantly different for males and females?

Q2: Is weight change significantly different for males and females?

Q3: Is bleeding time significantly different for males and females?

Final body weights (g)

Weights change (g)

m

Bleeding time (g)

Body weight distributions

Distributions of weight change

$\begin{array}{llllll}0.8 & 0.9 & 1.0 & 1.1 & 1.2 & 1.3\end{array}$
$N=394$ Bandw idth $=0.02154$

Distributions of bleeding times

$\mathrm{N}=381 \quad$ Bandw idth $=5.729$

MEANS OF TWO POPULATIONS

Independent Samples: Example

Q1: Is body weight for males and females significantly different?

Q2: Is weight change for males and females significantly different?

Bleeding time

Mean weight change

Mean bleeding time

HYPOTHESES

Theory

Two tail hypothesis
$\boldsymbol{H}_{0}: \mu_{1}=\mu_{2}$
$\boldsymbol{H}_{\mathrm{a}}: \mu_{1} \neq \mu_{2}$

One tail hypothesis

| $\boldsymbol{H}_{0}: \mu_{1} \geq \mu_{2}$ | $\boldsymbol{H}_{0}: \mu_{1} \leq \mu_{2}$ |
| :--- | :--- |
| $\boldsymbol{H}_{\mathrm{a}}: \mu_{1}<\mu_{2}$ | $\boldsymbol{H}_{\mathrm{a}}: \mu_{1}>\mu_{2}$ |

COMPARING MEANS

Theory

As we know how to work with standard hypotheses (comparison with constant μ_{0}), let us transform our hypothesis:

$$
\begin{aligned}
& \boldsymbol{H}_{0}: \mu_{1}=\mu_{2} \\
& \boldsymbol{H}_{\mathrm{a}}: \mu_{1} \neq \mu_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{H}_{0}: \mu_{2}-\mu_{1}=0 \\
& \boldsymbol{H}_{\mathrm{a}}: \mu_{2}-\mu_{1} \neq 0
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{H}_{0}: \mu=\mu_{0} \\
& \boldsymbol{H}_{\mathrm{a}}: \mu \neq \mu_{0}
\end{aligned}
$$

To use it, we need to know what is the distribution of $\mathrm{D}=m_{2}-m_{1}$

Distribution of sum or difference of 2 normal random variables

The sum/difference of 2 (or more) normal random variables is a normal random variable with mean equal to sum/difference of the means and variance equal to SUM of the variances of the compounds.

| Variables | m_{1} | \boldsymbol{m}_{2} | $m_{2}-m_{1}$ |
| :---: | :---: | :---: | :---: |
| Means | μ_{1} | μ_{2} | $\mu_{2}-\mu_{1}$ |
| Variances | $\sigma_{1}{ }^{2}$ | $\sigma_{2}{ }^{2}$ | $\sigma_{1}{ }^{2}+\sigma_{2}{ }^{2}$ |

COMPARING MEANS

$$
\begin{array}{ll}
\boldsymbol{H}_{\mathbf{0}}: \boldsymbol{\mu}_{\mathbf{2}}-\boldsymbol{\mu}_{\mathbf{1}}=\boldsymbol{D}_{\mathbf{0}} \\
\boldsymbol{H}_{\mathbf{a}}: \boldsymbol{\mu}_{\mathbf{2}}-\boldsymbol{\mu}_{\mathbf{1}} \neq \boldsymbol{D}_{\mathbf{0}} & D_{0}=\mu_{2}-\mu_{1} \\
\sigma_{m_{2}-m_{1}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} & \square \sqrt{D_{0}=m_{2}-m_{1}} \\
s_{m_{2}-m_{1}}=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}
\end{array}
$$

Statistics to be used for hypothesis testing:
if σ is known: z-statistics

$$
z=\frac{m_{2}-m_{1}-D_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}
$$

if σ is unknown: t-statistics

$$
t=\frac{m_{2}-m_{1}-D_{0}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

This is what we call a t-test !!!

COMPARING MEANS

Unpaired t-test: Algorithm

| $\boldsymbol{H}_{\mathbf{0}}: \mu_{\mathbf{2}}-\mu_{\mathbf{1}}=\boldsymbol{D}_{\mathbf{0}}$ | |
| :---: | :---: |
| $\boldsymbol{H}_{\mathrm{a}}: \boldsymbol{\mu}_{\mathbf{2}}-\boldsymbol{\mu}_{\mathbf{1}} \neq \boldsymbol{D}_{\mathbf{0}}$ | $D_{0}=m_{2}-m_{1}$ |
| Usually $\mathrm{D}_{0}=0$ | $s_{m_{2}-m_{1}}=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$ |

1. Build the statistics to be used for hypothesis testing:

$$
t=\frac{m_{2}-m_{1}-D_{0}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

t-distribution has following degrees of freedom:

$$
d f=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{1}{n_{1}-1}\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}+\frac{1}{n_{2}-1}\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}
$$

$$
\begin{aligned}
& d f=(n-1) \frac{\left(s_{1}^{2}+s_{2}^{2}\right)^{2}}{\left(s_{1}^{4}+s_{2}^{4}\right)} \\
& \left(n_{1}+n_{2}\right) / 2<d f<n_{1}+n_{2}
\end{aligned}
$$

2. Calculate the p-value
```
pt(t,df)
```

©. Or simply do:
$=T \cdot D I S T(A B S(t), d f, 2)$

```
t.test(x, y)
```

$=\mathrm{T} . \mathrm{TEST}$ (data1, data2, 2, 3)

UNPAIRED T-TEST

Example

```
mice
```

Q2: Is the mean of weight change significantly different for males and females?

```
# slow way
x = Mice$Weight.change[Mice$Sex == "f"]
y = Mice$Weight.change[Mice$Sex == "m"]
t.test(x,y)
# fast way
t.test(Mice$Weight.change ~ Mice$Sex)
# get p-value
t.test(...) $p.value
```

Weights change (g)

$$
p \text {-value }=0.0014
$$

Distributions of weight change

Mean weight change

m

PAIRED T-TEST

Theory and Example

Paired t-test

In a paired t-test, instead of testing $H_{0}: \mu_{2}-\mu_{1}=0$, use following steps:

1. Build a new random value $y=x_{1}-x_{2}$ (subtract matched values).

> t.test (x, y, paired = TRUE)
2. Test whether one-sample mean $\mu_{v}=0$

bloodpressure

Systolic blood pressure (mmHg)

| Subject | BP before | BP after |
| :---: | :---: | :---: |
| 1 | 122 | 127 |
| 2 | 126 | 128 |
| 3 | 132 | 140 |
| 4 | 120 | 119 |
| 5 | 142 | 145 |
| 6 | 130 | 130 |
| 7 | 142 | 148 |
| 8 | 137 | 135 |
| 9 | 128 | 129 |
| 10 | 132 | 137 |
| 11 | 128 | 128 |
| 12 | 129 | 133 |

The systolic blood pressures of $\mathrm{n}=12$ women between the ages of 20 and 35 were measured before and after usage of a newly developed oral contraceptive.

Q: Does the treatment affect the systolic blood pressure?

| Test | p-value |
| :---: | :---: |
| unpaired | 0.414662 |
| paired | 0.014506 |

```
Unpaired test
= T.TEST (array1, array2, 2, 3)
Paired test
= T.TEST (array1, array2, 2, 1)
```

```
BP = read.table(
"http://edu.modas.lu/data/txt/
bloodpressure.txt",
    sep="\t", header=TRUE)
t.test(BP$BP.before,
    BP$BP.after,
    paired = TRUE)
```


COMPARING PROPORTIONS

$$
\left.\begin{array}{l}
\boldsymbol{H}_{0}: \boldsymbol{\pi}_{\mathbf{1}}=\boldsymbol{\pi}_{\mathbf{2}} \\
\boldsymbol{H}_{\mathrm{a}}: \boldsymbol{\pi}_{\mathbf{1}} \neq \boldsymbol{\pi}_{\mathbf{2}}
\end{array} \sqrt{\boldsymbol{H}_{0}: \boldsymbol{\pi}_{1}-\boldsymbol{\pi}_{2}=\mathbf{0}} \begin{array}{l}
\boldsymbol{H}_{\mathrm{a}}: \boldsymbol{\pi}_{1}-\boldsymbol{\pi}_{\mathbf{2}} \neq \mathbf{0}
\end{array}\right] \sigma_{p_{1}-p_{2}}=\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}
$$

Pooled estimator of π

An estimator of a population proportion is obtained by computing a weighted average of the point estimators obtained from two independent samples.

$$
p=\frac{n_{1} p_{1}+n_{2} p_{2}}{n_{1}+n_{2}}
$$

$$
z=\frac{p_{1}-p_{2}}{\sqrt{p(1-p)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

$$
\sigma_{p_{1}-p_{2}}=\sqrt{p(1-p)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}
$$

```
prop.test(x = c(x1,x2),
    n = c(n1,n2))
```


COMPARING PROPORTIONS

Example

| SWR/J | | | MA/MyJ | mice. xls |
| :---: | :---: | :---: | :---: | :---: |
| f | f | | | |

Q: Is the male proportion significantly different in these mouse strains (0.47 and 0.65)?

Pooled proportion

$$
p=\frac{n_{1} p_{1}+n_{2} p_{2}}{n_{1}+n_{2}}
$$

$$
z=\frac{p_{1}-p_{2}}{\sqrt{p(1-p)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

$$
=2 * \text { NORM.S.DIST (-ABS }(z), \text { TRUE })
$$

| | SWR/J | MA/MyJ | pooled |
| :--- | :---: | :---: | :---: |
| count male | 9 | 15 | 24 |
| n | 19 | 23 | 42 |
| p | 0.474 | 0.652 | 0.571 |
| z | -1.16 | | |
| p-val | $\mathbf{0 . 2 4 4 6 5 8 9 9 7}$ | - approximate! | |

```
# no correction (approx):
prop.test(x = c(9,15) ,
        n = c(19,23),
        correct = FALSE)
```

\# with correction:
prop.test $(x=c(9,15)$,
$\mathrm{n}=\mathrm{c}(19,23))$
p-value $=0.3952$

NON-PARAMETRIC TESTS

Non-parametric unpaired test
Mann-Whitney-Wilcoxon U-test

Non-parametric paired test
Wilcoxon Signed Rank Test

MEASURES

Parametric and Non-parametric Measures \& Tests

Non-parametric measures

A statistical measure that does not depend on particular data distribution.
Non-parametric statistics / tests are usually performed on ranks.
Non-parametric procedures are more robust to outliers but less powerful than parametric ones.

NON-PARAMETRIC TESTS

Mann-Whitney-Wilcoxon U-test

| Non-paired (simple) t-test | | Mann-Whitney test |
| :--- | :--- | :--- |
| Number of students on psychology and sociology | wilcox.test (x, y) | |

| Psy | Soc |
| :---: | :---: |
| 80 | 90 |
| 95 | 30 |
| 65 | 65 |
| 75 | 60 |
| 60 | 55 |
| 80 | 70 |
| 85 | 70 |
| 90 | 35 |
| 75 | 75 |
| 40 | 30 |

$\boldsymbol{H}_{0}: \mu_{1}=\mu_{2}$
$\boldsymbol{H}_{a}: \mu_{1} \neq \mu_{2}$
t-Test: 0.06

```
In Excel use for rank:
RANK.AVG (x, TAB , 1)
```

1. Create ranks for joint data and calculate sum for ranks for each dataset $\left(R_{1}, R_{2}\right)$
2. Calculate U1 and U2

$$
U_{i}=n_{1} n_{2}+\frac{n_{i}\left(n_{i}+1\right)}{2}-R_{i}
$$

3. Take $U=$ minimum $(U 1, U 2)$
4. Calculate z-statistics $z=\frac{U-\frac{n_{1} n_{2}}{2}}{\sqrt{\frac{n_{1} n_{2}\left(n_{1}+n_{2}+1\right)}{12}}}$

2* NORM.S.DIST (z,TRUE)
5. Get p-value from z-stat by normal distribution

Mann-Whitney-Wilcoxon U-test
Non-paired (simple) t-test \longrightarrow Mann-Whitney test

\left.| Psy | Soc | rank | | | Psy | Soc | |
| :---: | :---: | :---: | :---: | :--- | :--- | ---: | ---: |
| 80 | 90 | 15.5 | 18.5 | | Medians | 77.5 | 62.5 |$\right)$

p-value $=0.04851$
$U_{i}=n_{1} n_{2}+\frac{n_{i}\left(n_{i}+1\right)}{2}-R_{i} \quad z=\frac{U-\frac{n_{1} n_{2}}{2}}{\sqrt{\frac{n_{1} n_{2}\left(n_{1}+n_{2}+1\right)}{12}}}$

NON-PARAMETRIC TESTS

Wilcoxon Signed Rank Test

| Paired t-test | |
| :---: | :---: |
| before | after |
| 12 | 412 |
| 42 | 312 |
| 31 | 63 |
| 462 | 632 |
| 1 | 0 |
| 25 | 20 |
| 63 | 124 |
| 754 | 5356 |
| 12 | 83 |
| 34 | 1245 |

$\boldsymbol{H}_{0}: \mu_{1}=\mu_{2}$
$\boldsymbol{H}_{\mathrm{a}}: \mu_{1} \neq \mu_{2}$
paired t-Test p -value $=0.165$
Non significant... ???

Procedure for Wilcoxon (Siegel method):

1. Make difference between columns
2. Calculate rank for differences
3. Sum up ranks for positive and negative differences: $\mathrm{s}+$ and s -. Now $\mathrm{T}=\min (\mathrm{s}+, \mathrm{s}-)$
4. Calculate z -statistics and use standard z -test:

$$
z=\frac{T-\frac{n(n+1)}{4}}{\sqrt{\frac{n(n+1)(2 n+1)}{24}}}
$$

Wilcoxon Signed Rank Test

| Paired t-test | | | | Wilcoxon signed rank test | | ```before = c(12, 42, 31, 462, 1, 25, 63, 754, 12, 34) after = c(412, 312, 63, 632, 0, 20, 124, 5356, 83, 1245)``` |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| before | after | diff | rank | | | |
| 12 | 412 | 400 | 8 | S+= | 52 | |
| 42 | 312 | 270 | 7 | S- = | 3 | |
| 31 | 63 | 32 | 3 | | | |
| 462 | 632 | 170 | 6 | $\mathrm{T}=$ | 3 | wilcox.test (befor |
| 1 | 0 | -1 | 2 | | | after, |
| 25 | 20 | -5 | 1 | $\mathrm{z}=$ | -2.49727 | paired = TRUE) |
| 63 | 124 | 61 | 4 | pval(2t)= | 0.012515 | |
| 754 | 5356 | 4602 | 10 | | | p-value $=0.009766$ |
| 12 | 83 | 71 | 5 | | $n(n+1)$ | |
| 34 | 1245 | 1211 | 9 | | 4 | |
| $\begin{aligned} & \text { s+ = SUMIF(diff;">0";rank) } \\ & \text { s- = SUMIF(diff;"<0";rank) } \end{aligned}$ | | | | $\sqrt{\underline{n(n}}$ | $\frac{+1)(2 n+1)}{24}$ | |

This is an approximate method. To increase power, use R

MULTIPLE TESTING

Correction for multiple testing

MULTIPLE TESTING

Probability of an error in a multiple test:

$$
\begin{aligned}
& 1-(0.95)^{\text {number of comparisons }} \\
& \text { n.o.c }=10 \rightarrow p(\text { error })=0.4 \\
& \text { n.o.c }=100 \rightarrow p(\text { error })=0.99
\end{aligned}
$$

MULTIPLE TESTING

Example

MULTIPLE TESTING

False discovery rate (FDR)

FDR control is a statistical method used in multiple-hypothesis testing to correct for multiple comparisons. FDR controls the expected proportion of incorrectly rejected null hypotheses (type I errors) in a list of rejected hypotheses.

| $\begin{aligned} & \tilde{0} \\ & \text { n } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | | Population Condition | | |
| :---: | :---: | :---: | :---: | :---: |
| | | H_{0} is TRUE | H_{0} is FALSE | Total |
| | Accept H_{0} (non-significant) | U | T | $m-R$ |
| | Reject H_{0} (significant) | V | S | R |
| | Total | m_{0} | $m-m_{0}$ | m |
| | | $F D R=E\left(\frac{V}{V+S}\right)$ | | |

MULTIPLE EXPERIMENTS

Assume we need to perform $m=100$ comparisons, and select maximum $\mathrm{FDR}=\alpha=0.05$

Independent tests

The Simes procedure ensures that its expected value $\mathrm{E}\left[\frac{V}{V+S}\right]$ is less than a given α (Benjamini and Hochberg 1995). This procedure is valid when the m tests are independent. Let $H_{1} \ldots H_{m}$ be the null hypotheses and $P_{1} \ldots P_{m}$ their corresponding p-values. Order these values in increasing order and denote them by $P_{(1)} \ldots P_{(m)}$. For a given α, find the largest k such that $P_{(k)} \leq \frac{k}{m} \alpha$.

Then reject (i.e. declare positive) all $H_{(i)}$ for $i=1, \ldots, k$.
Note that the mean α for these m tests is $\frac{\alpha(m+1)}{2 m}$ which could be used as a rough FDR, or RFDR, " α adjusted
for m indep. tests." The RFDR calculation shown here provides a useful approximation and is not part of the Benjamini and Hochberg method; see AFDR below.

MULTIPLE EXPERIMENTS

Assume we need to perform $m=100$ comparisons, and select maximum $\mathrm{FDR} \equiv \alpha \equiv 0.05$

$$
F D R=E\left(\frac{V}{V+S}\right)
$$

k - is rank of p-value (order \#)

$$
\text { Expected value for FDR }<\alpha \text { if } \quad P_{(k)} \leq \frac{k}{m} \alpha
$$

Benjamini-Hochberg (FDR)

p.adjust(pv, method="fdr")

```
p.adjust(pv,
```

 method="holm")
 $$
(m-k+1) P_{(k)} \leq \alpha
$$

MULTIPLE EXPERIMENTS

Example: Random Data

- Generate 6 columns of normal random variables (1000 points/candidates in each).
- Consider the first 3 columns as "treatment", and the next 3 columns as "control".
- Using t-test calculate p-values b/w "treatment" and "control" group. How many candidates have p-value<0.05 ?
\rightarrow Calculate FDR. How many candidates you have now?

Candidates.
5% are false

Same candidates.
Just sorted

Distribution of P values under null (2000 replications)

\# create dataset
$X=$ matrix(rnorm (1000*6),
nrow=1000, $\mathrm{ncol}=6$)
\# test 1000 hypotheses
$\mathrm{PV}=1$
for (i in 1 : nrow (X)) \{
res=t.test(X[i,1:3]
X[i,4:6])
pv[i]=res\$p.value
\}
\# number of pv < 0.05
sum ($\mathrm{pv}<0.05$)
\# FDR adjustment
fdr = p.adjust(pv,"fdr")
sum (fdr<0.05)

MULTIPLE EXPERIMENTS

Additional (optional) Task: Acute Lymphoblastic Leukemia

http://edu.modas.lu/data

all data

Acute lymphoblastic leukemia (ALL), is a form of leukemia, or cancer of the white blood cells characterized by excess lymphoblasts.
all_data.xls contains the results of full-transcript profiling for ALL patients and healthy donors using Affymetrix microarrays. The data were downloaded from the ArrayExpress repository and normalized. The expression values in the table are in $\log _{2}$ scale.

Let us analyze these data:

\rightarrow Calculate $\log _{2}$-ratio (logFC) for each gene (simply subtract means)
\rightarrow Calculate the p-value based on the t-test for each gene

- Perform the FDR-based adjustment of the p-value.

Calculate the number of up and down-regulated genes with FDR<0.01
Example score:

- How would you take into account logFC?
\rightarrow Make volcano plot: $x=\log$ FC, $y=-\log ($ adj.pvalue)

$$
\text { score }=-\log (\text { adj.p.value }) \cdot|\log F C|
$$

FDR (adj. p-value) is a main measure. Other only help...

QUESTIONS ?

Thank you for your attention

