Multiomics Data Science Group (MODAS)
Department of Cancer Research, LIH
Bioinformatics Platform (BIOINFO)
Department of Medical Informatics, LIH

BIOSTATISTICS for PhDs

Lecture 1

Descriptive Statistics, Distributions, Sampling

Peter Nazarov

Email: petr.nazarov@lih.lu
Skype: pvn.public

Lecture 1, 2024-02-05

\rightarrow numerical measures (location/variability/association), parametric/nonparametric

- basic summary and visualization in R: barplot, boxplot, scatter plot
\downarrow z-score, detection of outliers
- continuous distributions (normal, Student, χ^{2}, F), linkage to probability
\rightarrow sampling distribution, methods for sampling
- Lecture 2, 2024-02-19
- interval estimations for mean and proportion
\rightarrow hypotheses testing for mean(s), p-value, tails
\rightarrow number of samples
- power of a test
- multiple comparisons

Let's work at a comfortable speed!

Materials and other courses:
http://edu.modas.lu

R Studio

https://posit.co/downloads/

Lecture 3, 2024-03-04

\rightarrow interval estimations and hypotheses for variance
\rightarrow model fitting and test for independence

- linear models, ANOVA, posthoc analysis
- simple and multiple linear regression
- factors in linear regression
- logistic regression

Lecture 4, 2024-03-18 (please, propose!)
\rightarrow omics data analysis?

- survival analysis?
- clustering?
more practical exercise?

COURSE OVERVIEW

presentation methodology

https://nibmehub.com/opacservice/pdf/read/Statistics\ for \%20business\%20and\%20economic s-\%20\%20Anderson-\%20D.R..pdf

ChatGPT

WikipediA

The Free Encyclopedia

NUMERICAL MEASURES

Population and sample
Measures of location and variability
Parametric and non-parametric measures
Quantiles, quartiles and percentiles
Covariation, correlation
Exploratory data analysis
z-score, detection of outliers

NUMERICAL MEASURES

Population and Sample

LUXEMBOURG
INSTITUTE
OF HEALTH

NUMERICAL MEASURES

Measures of Location

Mean
A measure of central location computed by summing the data values and dividing by the number of observations.

proportion $p=\frac{\sum\left(x_{i}=\text { true }\right)}{n}$

Median
A stable measure of central
location provided by the
value in the middle when
the data are arranged in
ascending order.

Mode
A measure of location, defined as the value that occurs with greatest frequency.

LUXEMBOURG
INSTITUTE OF HEALTH

NUMERICAL MEASURES

Measures of Location

Female proportion $p_{f}=0.501$

mice

```
x = Mice$Bleeding.time
# measures of location
mean(x, na.rm=TRUE)
median(x , na.rm=TRUE)
# we need a package `modeest`
library (modeest)
mlv(x, na.rm=TRUE)
# show distribution
plot(density(x,na.rm=TRUE))
```


NUMERICAL MEASURES

Quantiles, Quartiles and Percentiles

Percentile

A value such that at least $p \%$ of the observations are less than or equal to this value, and at least (100-p)\% of the observations are greater than or equal to this value. The 50-th percentile is the median.

Quartiles

The 25 th, 50 th, and 75 th percentiles, referred to as the first quartile, the second quartile (median), and third quartile, respectively.


```
# define your data
x = c(12, 16, 19, 22, 23, 23,
24, 32, 36, 42, 63, 68)
# overview Q1, Q2, Q3
quantile(x)
# calculate 1'st quartile
quantile(x, 0.25)
```


LUXEMBOURG INSTITUTE OF HEALTH

NUMERICAL MEASURES

Measures of Variability

```
Interquartile range (IQR)
A robust non-parametric
measure of variability,
defined to be the
difference between the
third and first quartiles.
```

Variance
A measure of variability based on the squared deviations of the data values about the mean.

$$
\begin{aligned}
& \text { Standard deviation } \\
& \text { A measure of variability } \\
& \text { computed by taking the } \\
& \text { square root of the } \\
& \text { variance. }
\end{aligned}
$$

Sample standard deviation $=s=\sqrt{s^{2}}$

Populationstandard deviation $=\sigma=\sqrt{\sigma^{2}}$
population $\sigma^{2}=\frac{\sum\left(x_{i}-\mu\right)^{2}}{N}$
sample $s^{2}=\frac{\sum\left(x_{i}-m\right)^{2}}{n-1}$

Weight	12	16	19	22	23	23	24	32	36	42	63	68

```
# Measures of variability
var (x)
sd(x)
IQR(x)
```

LUXEMBOURG INSTITUTE OF HEALTH

NUMERICAL MEASURES
Measures of Variability

Coefficient of variation

A measure of relative variability computed by dividing the standard deviation by the mean.

Median absolute deviation (MAD) MAD is a robust non-parametric measure of the variability of a univariate sample of quantitative data.

$M A D=$ median $\left(\mid x_{i}-\right.$ median $\left.(x) \mid\right)$

NUMERICAL MEASURES

Skewness ($3^{\text {rd }}$ central moment)

Skewness

A measure of the shape of a data distribution. Data skewed to the left result in negative skewness; a symmetric data distribution results in zero skewness; and data skewed to the right result in positive skewness.

adapted from Anderson et al Statistics for Business and Economics

NUMERICAL MEASURES

Measure of Association between 2 Variables

Covariance

A measure of linear association between two variables. Positive values indicate a positive relationship; negative values indicate a negative relationship.


```
# let's use variables (less typing)
x = Mice$Starting.weight
y = Mice$Ending.weight
# plot
plot(x, y, pch=19, col=4)
# covariance
cov (x,y)
```

For missing data add the parameter:
use = "pairwise.complete.obs"

Ending weight VS. Starting weight

NUMERICAL MEASURES

Measure of Association between 2 Variables

Correlation (Pearson product moment correlation coefficient)

A measure of linear association between two variables that takes on values between -1 and +1 . Values near +1 indicate a strong positive linear relationship, values near -1 indicate a strong negative linear relationship; and values near zero indicate the lack of a linear relationship.

```
# correlation (Pearson)
cor(x, y)
# correlation (Spearman)
cor(x, y, method="spearman")
```

population
$\rho=\frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}}=\frac{\sum\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)}{\sigma_{x} \sigma_{y} N} \quad \rho=\frac{s_{x y}}{s_{x} s_{y}}=\frac{\sum\left(x_{i}-m_{x}\right)\left(y_{i}-m_{y}\right)}{s_{x} s_{y}(n-1)}$

Spearman Correlation

Non-parametric stable measure of association, equal to Pearson correlation between ranks

NUMERICAL MEASURES

OF HEALTH
Pearson Coefficient

NUMERICAL MEASURES

LUXEMBOURG INSTITUTE OF HEALTH

EXPLORATORY DATA ANALYSIS

Summarizing Data with Relative Frequency Distribution

pancreatitis

```
# load dataset
```

Panc $=$ read.table (
"http://edu.modas.lu/data
/txt/pancreatitis.txt",
sep="\t", header=TRUE,
as.is = FALSE)
str (Panc)

Frequency distribution
A tabular summary of data showing the number (frequency) of items in each of several nonoverlapping classes.

Relative frequency distribution

A tabular summary of data showing the fraction or proportion of data items in each of several nonoverlapping classes. Sum of all values should give 1

Frequency distribution:

Smoking	Cases	Controls
Never	2	56
Ex-smokers	13	80
Smokers	38	81
Total	53	217

Relative frequency distribution:

Smoking	Cases	Controls
Never	0.038	0.258
Ex-smokers	0.245	0.369
Smokers	0.717	0.373
Total	1	1

Estimation of probability distribution
When number of experiments $\mathrm{n} \rightarrow \infty$, R.F.D. \rightarrow P.D.

```
# frequency distribution (crosstabulation)
FD = table(Panc[,-1])
FD
# relative frequency distribution
RFD = prop.table(table(Panc[,-1]),2) # 2 - sum by columns
RFD
```

Disease		
Smoking	other pancreatitis	
Ex-smoker	80	13
Never	56	2
Smoker	81	38

Disease		
Omoking	other	pancreatitis
Ex-smoker	0.36866359	0.24528302
Never	0.25806452	0.03773585
Smoker	0.37327189	0.71698113

LUXEMBOURG
INSTITUTE
OF HEALTH

EXPLORATORY DATA ANALYSIS

Bar and Pie Charts

pancreatitis

```
# load dataset
Panc = read.table(
"http://edu.modas.lu/data/txt/pancreatitis.txt", sep="\t",
header=TRUE, as.is = FALSE)
str (Panc)
# crosstabulation
RFD = prop.table(table(Panc[,-1]),2)
# barplot
barplot(t(RFD), beside=TRUE)
# let's add some beauty :)
barplot(t(RFD)*100, beside=TRUE, col=c(4,2), main="Smoking Effect
on Pancreatitis", xlab="Smoking status", ylab="Percentage")
legend("top",colnames (RFD),col=c (4,2) ,pch=15)
# pies
par(mfcol=c(1,2)) # define 1x2 windows
pie(RFD[,1], main = colnames(RFD)[1])
pie(RFD[,2], main = colnames(RFD)[2])
```


Try to avoid using pie-charts in scientific reports.
For public/business presentations only!

LUXEMBOURG INSTITUTE OF HEALTH

EXPLORATORY DATA ANALYSIS

Histogram and Probability Density Function

```
```


load dataset

```
```


load dataset

Mice = read.table("http://edu.modas.lu/data/txt/mice.txt", sep="\t", header=TRUE, as.is = FALSE)
Mice = read.table("http://edu.modas.lu/data/txt/mice.txt", sep="\t", header=TRUE, as.is = FALSE)
str(Mice)
str(Mice)

histogram

histogram

hist(Mice$Starting.weight)
hist(Mice$Starting.weight)
hist(Mice$Starting.weight, breaks = seq(8,40),col=4)
hist(Mice$Starting.weight, breaks = seq(8,40),col=4)

Probability density function (convolution with a smooth kernel)

Probability density function (convolution with a smooth kernel)

plot(density(Mice\$Starting.weight), lwd=2, col=4)

```
```

plot(density(Mice\$Starting.weight), lwd=2, col=4)

```
```

if data contain NA, use na. $\mathrm{rm}=$ TRUE parameter in density()
play with kernel width
$>$ cut $=0$ to ensure value limits

LUXEMBOURG INSTITUTE OF HEALTH

EXPLORATORY DATA ANALYSIS

Box Plot

Five-number summary
An exploratory data analysis technique that uses five numbers to summarize the data: smallest value, first quartile, median, third quartile, and largest value


```
boxplot(x)
```


Box plot

A graphical summary of data based on a fivenumber summary


```
## define colors for strains
col_strain =
    rainbow(nlevels (Mice$Strain))
## build boxplots
boxplot(Ending.weight ~ Strain,
    data = Mice,
    las = 2,
    col = col_strain,
    cex.axis = 0.7,
    ylab="Weight, g"
    main="Mouse weight ~ Strains")
```


LUXEMBOURG INSTITUTE OF HEALTH

EXPLORATORY DATA ANALYSIS

Violin Plot

Violin plot
Violin plot is a more advanced visualization tool that shows the distribution of the data in categories

```
library(ggplot2)
p = ggplot(Mice, aes(x=Strain, y=Ending.weight, fill=Strain))
p = p + geom_violin(scale="width") + geom_boxplot(width=0.3)
p = p + theme grey(base_size = 10)
p = p + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1))
p = p + theme(legend.key.size = unit(0.3, 'cm'))
print(p)
```


DETECTION OF OUTLIERS

z-score

z-score

This value is computed by dividing the deviation from the mean by the standard deviation s. A \boldsymbol{z}-score is referred to as a standardized value and

$$
z_{i}=\frac{x_{i}-m}{s}
$$

Weight	z-score
12	-1.10
16	-0.88
19	-0.71
22	-0.54
23	-0.48
23	-0.48
24	-0.43
32	0.02
36	0.24
42	0.58
63	1.75
68	2.03

```
# z-score
z = scale(x)
```


Chebyshev's theorem

For any data set, at least $\left(1-1 / z^{2}\right)$ of the data values must be within z standard deviations from the mean, where z - any value >1.

For ANY distribution:

- At least $\mathbf{7 5} \%$ of the values are within $\mathbf{z}=\mathbf{2}$ standard deviations from the mean
- At least $\mathbf{8 9} \%$ of the values are within $\mathbf{z = 3}$ standard deviations from the mean
- At least 94% of the values are within $\mathbf{z =}=4$ standard deviations from the mean

At least $\mathbf{9 6 \%}$ of the values are within $\mathbf{z = 5}$ standard deviations from the mean

DETECTION OF OUTLIERS

Normal and other bell-shaped

For bell-shaped distributions:

- Approximately 68% of the values are within 1 st.dev. from mean

Outlier

An unusually small or unusually large data value.

- Approximately 95% of the values are within 2 st.dev. from mean

Almost all data points are inside 3 st.dev. from mean

For bell-shaped distributions data points with $|z|>3$ can be considered as outliers.

Weight	z-score
23	0.04
12	-0.53
22	-0.01
12	-0.53
21	-0.06
81	3.10
22	-0.01
20	-0.11
12	-0.53
19	-0.17
14	-0.43
13	-0.48
17	-0.27

Example: Gaussian / normal distribution

LUXEMBOURG INSTITUTE OF HEALTH

DETECTION OF OUTLIERS

Task: Detection of Outliers

Using R, try to identify outlier mice on the basis of Weight change variable

$$
z_{i}=\frac{x_{i}-m}{s}
$$

take and show the data

take and show the data

x = Mice$Weight.change
x = Mice$Weight.change
plot(x,pch=19,col=4)
plot(x,pch=19,col=4)
plot(density(x,na.rm=TRUE))
plot(density(x,na.rm=TRUE))

z-score

z-score

z = scale(x)
z = scale(x)

show outlier values

show outlier values

x[abs (z)>3]
x[abs (z)>3]

show outlier mice

show outlier mice

Mice[abs(z)>3,]
Mice[abs(z)>3,]

For bell-shaped distributions data points with $|z|>3$ can be considered as outliers.

```
# load Mice dataset
```

Mice $=$ read.table (
"http://edu.modas.lu/data/txt/mice.
txt", sep="\t", header=TRUE, as.is
= FALSE)
str (Mice)

DETECTION OF OUTLIERS

Iglewicz-Hoaglin method: modified Z-score

These authors recommend that modified Z-scores with an absolute value of greater than 3.5 be labeled as potential outliers.

$$
z_{i}=0.6745 \frac{x_{i}-\operatorname{median}(x)}{\operatorname{MAD}(x)}
$$

$$
M A D=\operatorname{median}\left(\left|x_{i}-\operatorname{median}(x)\right|\right)
$$

$$
|z|>3.5 \Rightarrow \text { outlier }
$$

```
x = Mice$Weight. change
z = (x-median(x))/mad(x)
# index of outlier mice
iout = abs(z)>3.5
## plot
plot(x, pch=19, col=
c(4,2)[as.integer(iout)+1] )
```

Boris Iglewicz and David Hoaglin (1993), "Volume 16: How to Detect and Handle Outliers", The ASQC Basic References in Quality Control: Statistical Techniques, Edward F. Mykytka, Ph.D., Editor

More methods are at:
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm

DETECTION OF OUTLIERS

Grubbs' Method

Grubbs' test is an iterative method to detect outliers in a data set assumed to come from a normally distributed population.

$$
\begin{array}{l|l|}
\begin{array}{c}
\text { Grubbs' statistics } \\
\text { at step k+1: }
\end{array} & G_{(k+1)}=\frac{\max \left|x_{i}-m_{(k)}\right|}{s_{(k)}}=\max \left|z_{i}\right|_{(k)} \quad \begin{array}{c}
(\mathrm{k})-\text { iteration } k \\
m-\text { mean of the rest data } \\
s-\text { st.dev. of the rest data }
\end{array}
\end{array}
$$

The hypothesis of no outliers is rejected at significance level α if

$$
G>\frac{n-1}{\sqrt{n}} \sqrt{\frac{t^{2}}{n-2+t^{2}}}
$$

$$
\text { where } \begin{aligned}
& t^{2}=t_{\alpha /(2 n), \text { d. } f .=n-2}^{2} \\
& t \text { - Student statistics }
\end{aligned}
$$

```
library(outliers)
x1 = x
while (grubbs.test(x1) $p.value<0.05)
    x1[ x1==outlier(x1) ] = NA
plot(x, pch=19, col=2,
    main="Grubbs' method")points(x1, pch=19, col=4)
```


DETECTION OF OUTLIERS

Generally speaking, removing of outliers is a dangerous procedure and cannot be recommended!

Instead, potential outliers should be investigated and only (!) if there is other evidence that data come from experimental error - removed.

Ernest Rutherford

~ 0.01\%

Rutherford's atom model

DISTRIBUTIONS

Probability density function
Normal distribution
Other: t, χ^{2}, F distributions
Sampling distribution
Point estimation

Probability density function
A function used to compute probabilities for a continuous random variable. The area under the graph of a probability density function over an interval represents probability.

$$
\int_{x} f(x)=1
$$

NORMAL DISTRIBUTION

Normal Probability Density Function

Normal (Gaussian) probability distribution A continuous probability distribution. Its probability density function is bell shaped and determined by its mean μ and standard deviation σ.

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

(cumulative) Probability function:

$$
\begin{aligned}
& \text { probability density }(x->y): \\
& \text { cumulative probability }(x->p): \\
& \text { quantile }(p->x): \\
& \text { generate random variables }(x):
\end{aligned}
$$

NORMAL DISTRIBUTION

Standard normal probability distribution
A normal distribution with a mean of zero and a standard deviation of one. We will call it "normal statistics" later :)

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

remember z-score?
$\mathrm{x} \rightarrow \mathrm{z}$
$z=\frac{x-\mu}{\sigma}$
$\mathrm{z} \rightarrow \mathrm{x}$
$x=\sigma Z+\mu$

pnorm(z)

NORMAL DISTRIBUTION

Example: Aptitude Test

```
Example
Suppose that the score on an aptitude test are normally distributed with a mean of 100 and a standard deviation of 10. (Some original IQ tests were purported to have these parameters)
What is the probability that a randomly selected score is below 90 ?
What is the probability that a randomly selected score is above 125 ?
```


NORMAL DISTRIBUTION

Example: Aptitude Test

Classical way:
Let's transform Normal distribution \mathbf{x} to Standard Normal z

$$
z_{x=90}=\frac{90-100}{10}=-1 \quad z_{x=125}=\frac{125-100}{10}=2.5
$$

Example

Suppose that the score on an aptitude test are normally distributed with a mean of 100 and a standard deviation of 10 . (Some original IQ tests were purported to have these parameters.) What is the probability that a randomly selected score is below 90 ?
What is the probability that a randomly selected score is above $125 ?$

Easier way:

We can directly work with Normal distribution if we know its mean and standard deviation.

```
pnorm(90,100,10)
1-pnorm(125,100,10)
```

Calculate the area under the curve before these z-values:

```
\(P(x<90)=P(z<-1)=\) NORM.S.DIST \((-1 ;\) TRUE \()=0.159\)
\(P(x>125)=P(z>2.5)=1-P(z<2.5)=1-\) NORM.S.DIST(2.5,TRUE \()=0.006\)
```


NORMAL DISTRIBUTION

Example: Inverted situation

Example

Suppose that the score on an aptitude test are normally distributed with a mean of 100 and a standard deviation of 10 .
Find the score cutting top 5\% respondent?

Assume that we know red area (probability p).
Then limiting z can obtained using:

```
qnorm(p)
qnorm(p,m,s)
```

```
qnorm(1-0.05, 100, 10)
> 116
```


Student's t-distribution

is a continuous probability distribution that generalizes the standard normal distribution. It has very similar properties but heavier tails.

Degrees of freedom

A parameter of many distributions that is usually linked to the number of independent observations. E.g. when t distribution is used for the computation of an interval estimate of a population mean, the appropriate t distribution has $v=n-1$ degrees of freedom, where n is the size of the simple random sample.

Student t distribution with d.f. $v \rightarrow \infty$ becomes normal z distribution

```
probability density (x->y):
cumulative probability (x->p):
quantile (p->x):
generate random variables (x):
```

dnorm()	$\operatorname{dt()}$
pnorm()	pt()
qnorm()	$q t()$
rnorm()	$r t()$

OTHER CONTINUOUS DISTRIBITIONS

χ^{2}-distribution

the chi-squared distribution (also chi-square or χ^{2}-distribution) with k degrees of freedom is the distribution of a sum of the squares of k independent standard normal random variables z. It describes the behavior of sampling variance.
$\chi_{d f=k}^{2}=\sum_{i=1}^{k} x_{i}^{2} \quad$ where $x_{i}-$ normal

Some applications of χ^{2} distribution:

- interval estimations for variance
- goodness of fit of statistical model to observations

```
probability density (x->y):
```

probability density (x->y):
cumulative probability (x->p):
cumulative probability (x->p):
quantile (p->x):
quantile (p->x):
generate random variables (x):

```
generate random variables (x):
```

```
dchisq()
pchisq()
qchisq()
rchisq()
```


OTHER CONTINUOUS DISTRIBITIONS

F-distribution

The F-distribution was introduced as a distribution of a ratio of two χ^{2} random variables. It has $\mathbf{2}$ degrees of freedom (numerator and denominator) and is used frequently as the null distribution of a test statistic, most notably in the analysis of variance (ANOVA) and F-test

The function is "invariant" to the function $1 / x \odot$. So usually only values F > 1 are considered

```
probability density (x->y):
cumulative probability (x->p):
quantile (p->x):
```

df()
pf()
qf()
rf()
$X=\frac{S_{1} / d_{1}}{S_{2} / d_{2}}$

SAMPLING DISTRIBUTION

Population and Sample

LUXEMBOURG INSTITUTE OF HEALTH

SAMPLING DISTRIBUTION

Example: Making a Random Sampling

790 mice from different strains
http://phenome.jax.org

ID Strain	Sex	$\begin{gathered} \text { Starting } \\ \text { age } \end{gathered}$	$\begin{aligned} & \text { Ending } \\ & \text { age } \end{aligned}$	Starting	Ending weight	Weight change	$\begin{aligned} & \text { Bleeding } \\ & \text { time } \end{aligned}$	Ionized Ca in blood	Blood pH	Bone density	$\begin{aligned} & \text { Lean } \\ & \text { tissues } \\ & \text { weight } \end{aligned}$	$\begin{gathered} \text { Fat } \\ \text { weight } \end{gathered}$
1 129S1/SvimJ	\dagger	66	116	19.3	20.5	1.062	64	1.2	7.24	0.0605	14.5	4.4
2 12951/SvimJ	f	66	116	19.1	20.8	1.089	78	1.15	7.27	0.0553	13.9	4.4
3 12951/SvimJ	f	66	108	17.9	19.8	1.106	90	1.16	7.26	0.0546	13.8	2.9
$36812951 /$ SvimJ	f	72	114	18.3	21	1.148	65	1.26	7.22	0.0599	15.4	4.2
369 12991/SvimJ	f	72	115	20.2	21.9	1.084	55	1.23	7.3	0.0623	15.6	4.3
370 12991/SvimJ	f	72	116	18.8	22.1	1.176		1.21	7.28	0.0626	16.4	4.3
371 12991/SvimJ	f	72	119	19.4	21.3	1.098	49	1.24	7.24	0.0632	16.6	5.4
372 12991/SvimJ	f	72	122	18.3	20.1	1.098	73	1.17	7.19	0.0592	16	4.1
4 12951/SvimJ	f	66	109	17.2	18.9	1.099	41	1.25	7.29	0.0513	14	3.2
5 12981/SvimJ	f	66	112	19.7	21.3	1.081	129	1.14	7.22	0.0501	16.3	5.2
10 129S1/SvimJ	m	66	112	24.3	24.7	1.016	119	1.13	7.24	0.0533	17.6	$6^{6.8}$
364 12991/SvimJ	m	72	114	25.3	27.2	1.075	64	1.25	7.27	0.0596	19.3	5.8
365 129S1/SvimJ	m	72	115	21.4	23.9	1.117	48	1.25	7.28	${ }^{0.0563}$	17.4	5.7
366 12991/SvimJ	m	72	118	24.5	26.3	1.073	59	1.25	7.26	0.0609	17.8	7.1
367 12991/SvimJ	m	72	122	24	26	1.083	69	1.29	7.26	0.0584	19.2	
$612951 /$ SvimJ	m	66	116	21.6	23.3	1.079	78	1.15	7.27	0.0497	17.2	5.7
7 12951/SvimJ	m	${ }_{6} 6$	107	22.7	26.5	${ }^{1.167}$	90	1.18	7.28	0.0493	18.7	
8 129S1/SvimJ	m	66	108	25.4	27.4	1.079	35	1.24	7.26	0.0538	18.9	7.1
9 12981/SvimJ	m	66	109	24.4	27.5	1.127	43	1.29	7.29	0.0539	19.5	7.1

Assume that these mice is a population with size $N=790$. Build 5 samples with $n=20$
Calculate m, s for Ending weight and p - proportion of males for each sample

Point estimator

The sample statistics, such as m, s, or p (proportion) that provide the point estimations to the population parameters μ, σ, π. are called point estimators

```
m = double(0)
s = double(0)
p = double(0)
for (i in 1:5){
    ix = sample(1:nrow(Mice),20)
    m[i] = mean(Mice$Ending.weight[ix])
    s[i] = sd(Mice$Ending.weight[ix])
    p[i] = mean(Mice$Sex[ix] == "m")
}
summary (m)
summary (s)
summary (p)
```

Now, replace 5 with 1000 and check the distributions:

```
plot(density(m))
plot(density(s))
plot(density(p))
```


SAMPLING DISTRIBUTION

Sampling Distribution

Sampling distribution

A probability distribution consisting of all possible values of a sample statistic.

Distribution of p

$$
\sigma_{p}=\sqrt{\frac{\pi(1-\pi)}{n}}
$$

Point estimator

The sample statistic, such as m, s, or p, that provides the point estimation the population parameters μ, σ, π.

$$
E(m)=\mu
$$

$$
E(p)=\pi
$$

The standard deviation of the point estimator -
"Standard error"

SAMPLING DISTRIBUTION

Unbiased

A property of a point estimator that is present when the expected value of the point estimator is equal to the population parameter it estimates.

Distribution of m

$$
E(m)=\mu
$$

SAMPLING DISTRIBUTION

Unbiased Point Estimator: Variance (but not St.Dev!)

Unbiased

A property of a point estimator that is present when the expected value of the point estimator is equal to the population parameter it estimates.

Unbiased

LUXEMBOURG INSTITUTE OF HEALTH

SAMPLING DISTRIBUTION

Central Limit Theorem

Central limit theorem

In selecting simple random sample of size n from a population, the sampling distribution of the sample mean m can be approximated by a normal distribution as the sample size becomes large

In practice, if the sample size $n>30$, the normal distribution is a good approximation for the sample mean for any initial distribution.

SAMPLING METHODS

Stratified Sampling

Stratified random sampling

A probability sampling method in which the population is first divided into strata and a simple random sample is then taken from each stratum.

Strata
Sample

SAMPLING METHODS

Stratified Sampling Strategies

Stratified random sampling

A probability sampling method in which the population is first divided into strata and a simple random sample is then taken from each stratum.

SAMPLING METHODS

Cluster Sampling

Cluster sampling

A probability sampling method in which the population is first divided into clusters and then a simple random sample of the clusters is taken.

> 1. Random sampling of sampling based on cost optimization

SAMPLING METHODS

Systematic Sampling
Systematic sampling
A probability sampling method in which we randomly select one of the first k elements and then select every k-th element thereafter.

...

SAMPLING METHODS

Convenience Sampling

Convenience sampling

A nonprobability method of sampling whereby elements are selected for the sample on the basis of convenience.

This is what we use often in science... though it is not too scientific ©

SAMPLING METHODS

Judgment Sampling
Judgment sampling
A nonprobability method of sampling whereby elements are selected for the sample based on the judgment of the person doing the study.

Perform of a selection of most confident or most experienced experts.

SAMPLING METHODS

The wisdom of the crowd

is the process of taking into account the collective opinion of a group of individuals rather than a single expert to answer a question. A large group's aggregated answers to questions involving quantity estimation has generally been found to be as good as, and often better than, the answer given by any of the individuals within the group.

The classic wisdom-of-the-crowds finding involves point estimation of a continuous quantity. At a 1906 country fair in Plymouth, eight hundred people participated in a contest to estimate the weight of a slaughtered and dressed ox. Statistician Francis Galton observed that the median guess, 1207 pounds, was accurate within 1% of the true weight of 1198 pounds.

http://www.youtube.com/watch?v=r-FonWBEb0o

SAMPLING BIAS

Were to put an additional protection?
'Spitfire': damage analysis

Other examples: Paleolithic remains \& lifestyle, kind dolphins,

QUESTIONS ?

Thank you for your attention

to be continued...

