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Introduction
correlation measures

dependent and independent random variables

hypotheses about correlation

Fisher’s transformation

Testing for significance
linear models

estimation of the noise variance

interval estimations for coefficient

testing hypothesis about significance

Regression Analysis
confidence and prediction

multiple linear regression

nonlinear regression

OUTLINE
Lecture 11
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CORRELATION
Dependent and Independent Variables
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CORRELATION
Dependent and Independent Variables
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CORRELATION
Measure of Association between 2 Variables

Covariance 
A measure of linear association between two variables. Positive 
values indicate a positive relationship; negative values indicate a 
negative relationship.
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CORRELATION
Measure of Association between 2 Variables

Correlation (Pearson product moment correlation coefficient)
A measure of linear association between two variables that takes on values between -1 
and +1. Values near +1 indicate a strong positive linear relationship, values near -1 
indicate a strong negative linear relationship; and values near zero indicate the lack of a 
linear relationship.
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= CORREL(data)

cor(data)

cor(data,method="pearson",

use="pairwise.complete.obs")
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CORRELATION
Correlation Coefficient

Wikipedia

If we have only 2 data points in x and y datasets, 

what values would you expect for correlation b/w 

x and y ?
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CORRELATION
Test  for Significance of Correlation

Length Width
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A malacologist interested in the morphology of West Indian 

chitons, Chiton olivaceous, measured the length and width of the 

eight overlapping plates composing the shell of 10 of these 

animals.

chiton

r  = 0.9692,  is it significant?

Test hypotheses:

H0: ρ = 0

Ha: ρ ≠ 0

2

1 2






n

r
sr

Assume x,y has normal distributions, ρ = 0,

then perform a one sample t-test with 

following parameters:

Degree of freedom df = n - 2
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CORRELATION
Test for Significance of Correlation

r  = CORREL(…) = 0.9692
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t = 11.14, 

p-value = 4e-6

Degree of freedom df = n - 2
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Test hypotheses:

H0: ρ = 0

Ha: ρ ≠ 0

= 2*T.DIST(-abs(t),n-2,TRUE)

cor.test(data)
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CORRELATION
Confidence Intervals: Fisher Transformation
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Confidence intervals with Fisher’s transformation:

1. Transform correlation r  Z

2. Calculate standard deviation for Z using equation  

3. Calculate upper and lower limits of Z: 

Zmin / max = Z  ± zα/2 σZ = Z  ± 1.96 σZ

4. Transform Zmin/max back into rmin/max

r= 0.969226

Fisher's Z= 2.079362

sZ= 0.377964

Lower Upper

Limits Z 1.338552 2.820172

Limits r 0.871324 0.992922
cor.test(data)Excel: use steps 1-4
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SIMPLE LINEAR REGRESSION
Experiments

Dependent variable 
The variable that is being predicted or explained. It is denoted by y.

Independent variable 
The variable that is doing the predicting or explaining. It is denoted by x.
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Cells are grown under different 

temperature conditions from 20

to 40. A researched would like to 

find a dependency between T and 

cell number. 

cells

Cells = read.table(

"http://edu.modas.lu/data/txt/cells.txt",

sep="\t",

header=TRUE)

str(Cells)

plot(Cells, pch=19)
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SIMPLE LINEAR REGRESSION
Regression Model and Regression Line

Simple linear regression 
Regression analysis involving one independent variable and one dependent variable in 
which the relationship between the variables is approximated by a straight line.

Building a regression means finding and tuning the model to explain the behaviour of the data
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SIMPLE LINEAR REGRESSION
Regression Model and Regression Line

  01)( xxy

Model for a simple linear regression:
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Regression model 
The equation describing how y is related to x and an error term; in simple linear 
regression, the regression model is y = 0 + 1x + 

Regression equation 
The equation that describes how the mean or expected value of the dependent variable 
is related to the independent variable; in simple linear regression, 
E(y) =0 + 1x
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SIMPLE LINEAR REGRESSION
Regression Model and Regression Line

  01)( xxy
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SIMPLE LINEAR REGRESSION
Experiments

Estimated regression equation 
The estimate of the regression equation developed from sample 
data by using the least squares method. For simple linear 
regression, the estimated regression equation is y = b0 + b1x

cells

1. Make a scatter plot for the data.
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2. Right click to “Add Trendline”. Show equation.

y = 15.339x - 191.01
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plot(Cells, pch=19)

abline(a=-191.01,

b=15.339,

col=2)
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SIMPLE LINEAR REGRESSION
Overview
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SIMPLE LINEAR REGRESSION
Experiments

Least squares method 
A procedure used to develop the estimated regression equation. 

The objective is to minimize   
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SIMPLE LINEAR REGRESSION
Coefficient of Determination

 
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Sum squares due to error
y = 15.339x - 191.01
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 2  yi mySST

Sum squares total

 2ˆ  yi mySSR

Sum squares due to regression

SSESSRSST 

The Main Equation
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SIMPLE LINEAR REGRESSION
ANOVA and Regression
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SIMPLE LINEAR REGRESSION
Coefficient of Determination

Coefficient of determination 
A measure of the goodness of fit of the estimated regression 
equation. It can be interpreted as the proportion of the 
variability in the dependent variable y that is explained by the 
estimated regression equation.
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y = 15.339x - 191.01
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Correlation coefficient 
A measure of the strength of the linear relationship between 
two variables (previously discussed in Lecture 1).
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LINEAR REGRESSION
Assumptions

  01)( xxyAssumptions for Simple Linear Regression

1. The error term  is a random variable with 0 mean, i.e. E[]=0

2. The variance of , denoted by  2, is the same for all values of x

3. The values of  are independent

3. The term  is a normally distributed variable
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TESTING FOR SIGNIFICANCE
Estimation of  2

2
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n
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i-th residual 
The difference between the observed value of the dependent variable and the value predicted using 
the estimated regression equation; for the i-th observation the i-th residual is: ii yy ˆ

Mean square error 
The unbiased estimate of the variance of the error term 2. It is denoted by MSE or s2.
Standard error of the estimate: the square root of the mean square error, denoted by s. It is the 
estimate of , the standard deviation of the error term .
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TESTING FOR SIGNIFICANCE
Sampling Distribution for b1
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TESTING FOR SIGNIFICANCE
Test for Significance

H0: 1 = 0 insignificant

Ha: 1  0

1. Build a t-test statistics.
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2. Calculate p-value for t
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1. Build a F-test statistics.

2. Calculate a p-value
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REGRESSION ANALYSIS
Example: Excel and R

cells
= INTERCEPT(y,x)

= SLOPE(y,x)
1. Calculate manually b1 and b0

Intercept b0= -191.008119

Slope b1= 15.3385723

Data  Data Analysis  Regression2. Let’s do it automatically

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.95091908

R Square 0.9042471

Adjusted R Square 0.89920747

Standard Error 31.7623796

Observations 21

ANOVA

df SS MS F Significance F

Regression 1 181015.1117 181015.11 179.4274 3.95809E-11

Residual 19 19168.12641 1008.8488

Total 20 200183.2381

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -190.783550 35.031618 -5.446039 2.96E-05 -264.10557 -117.46153 -264.10557 -117.46153

Temperature 15.332468 1.144637 13.395051 3.96E-11 12.93671537 17.7282197 12.93671537 17.7282197

model=lm(Cell.Number~Temperature, data=Cells)

# Regression table

summary(model)

# ANOVA table

anova(model)

# intercept/slope

model$coefficients

In R you should run the 

complete analysis:
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REGRESSION ANALYSIS
Confidence and Prediction

Confidence interval 
The interval estimate of the mean value of y for a given value of x. 

Prediction interval 
The interval estimate of an individual value of y for a given value of x.
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REGRESSION ANALYSIS
Example

cells.txt 

x = data$Temperature

y = data$Cell.Number

res = lm(y~x) 

res

summary(res)

# draw the data

x11()

plot(x,y)

# draw the regression and its confidence (95%)

lines(x, predict(res,int = "confidence")[,1],col=4,lwd=2)

lines(x, predict(res,int = "confidence")[,2],col=4)

lines(x, predict(res,int = "confidence")[,3],col=4)

# draw the prediction for the values (95%)

lines(x, predict(res,int = "pred")[,2],col=2)

lines(x, predict(res,int = "pred")[,3],col=2)
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REGRESSION ANALYSIS
Residuals
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REGRESSION ANALYSIS
Example 2

rana

A biology student wishes to determine the relationship between temperature and heart rate

in leopard frog, Rana pipiens. He manipulates the temperature in 2 increment ranging from

2 to 18C and records the heart rate at each interval. His data are presented in table rana.txt

1) Build the model and provide the p-value for linear dependency

2) Provide interval estimation for the slope of the dependency

3) Estimate 95% prediction interval for heart rate at 15
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REGRESSION ANALYSIS
Multiple Regression
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REGRESSION ANALYSIS
Multiple Regression
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REGRESSION ANALYSIS
Non-Linear Regression
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in R: glm(…, family="binomial")

Mice = read.table(

"http://edu.modas.lu/data/txt/mice.txt",

header=T,sep="\t",as.is=FALSE)

str(Mice)

model = glm( Sex ~ Blood.pH +

Bone.mineral.density + Lean.tissues.weight +

Ending.weight,

data = Mice[ikeep,],

family = "binomial")

summary(model)

Example:

http://edu.modas.lu/modas_pm/part2.html

http://edu.modas.lu/modas_pm/part2.html
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CASE STUDY
Correlation Analysis of Transcriptomic Data

Gene regulatory networks (GRN) in living cells can be considered as extremely complex information

processing systems. Despite their complexity, the main feature of the GRN is their robustness and ability

to form a proper biochemical respond to a wide range of extracellular conditions. The knowledge about the

part of GRN related to a specific bio-function of cellular process is of extreme importance for controlling

them. Another important aspect of understanding cell functionality is linked to knowledge about the

regulatory effect of small non-coding micro-RNA (miRNA). miRNAs influence most fundamental biological

processes by ultimately altering the expression levels of proteins either through degradation of mRNA or

through interference with mRNA translation. miRNAs tend to have long half lives and therefore represent

promising candidates to be used as disease markers and therapeutic targets.

Being a reverse-engineering task, the GRN reconstruction is highly challenging, and requires analysis of

large sets of experimental data. One of the straightest ways to reconstruct GRN is based on co-expression

(CE) analysis of transcriptomic data from cDNA microarrays. Two significantly co-expressed genes or a

gene and miRNA have the same or inverted expression profile over a number of samples. Biologically this

is a good evidence for either a direct interaction between the genes or their mutual participation in the

same biological function.

The performance of the software was tested using public mRNA and miRNA expression data from 14

various cell lines (A498, ACHN, CAKI1, CCRFCEM, HCT15, HL60, K562, MALME3M, MCF7, MOLT4,

NCIH226, NCIH522, RPMI8226, SKOV3). Data from 42 Affymetrix® HGU133plus2 arrays and 14 miRNA

custom microarray experiments were downloaded from public repositories (ref. E-MTAB-37 and E-MEXP-

1029, http://www.ebi.ac.uk ) , normalized and analyzed.

Tool: http://edu.sablab.net/biostat2/coexpress.zip

Data: http://edu.sablab.net/biostat2/data-mir-mrna_14cl.zip

http://www.ebi.ac.uk/
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Thank you for your 

attention

QUESTIONS ?


