

BIOSTATISTICS

Lecture 10 Analysis of Variance (ANOVA)

Petr Nazarov

Email: petr.nazarov@lih.lu Skype: pvn.public

16-04-2021

Lecture 10. Analysis of variance (ANOVA)

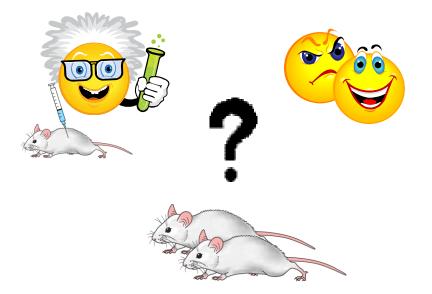
OUTLINE

Lecture 10

Introduction to ANOVA

- why ANOVA
- shoe experiment
- assumptions with ANOVA
- Single-factor ANOVA
- Multi-factor ANOVA
- Experimental design
 - randomized design
 - block design

Why ANOVA?


Means for more than 2 populations We have measurements for 5 conditions. Are the means for these conditions equal?

Validation of the effects

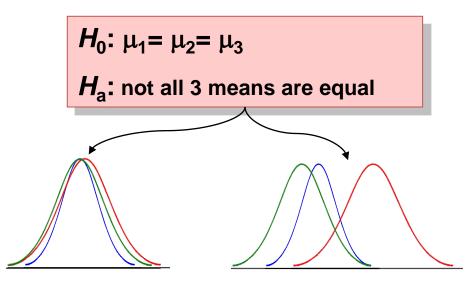
We assume that we have several factors affecting our data. Which factors are most significant? Which can be neglected?

If we would use pairwise comparisons, what will be the probability of getting error? Number of comparisons: $C_2^5 = \frac{5!}{2!3!} = 10$

Probability of an error: $1-(0.95)^{10} = 0.4$

http://easylink.playstream.com/affymetrix/ambsymposium/partek_08.wvx

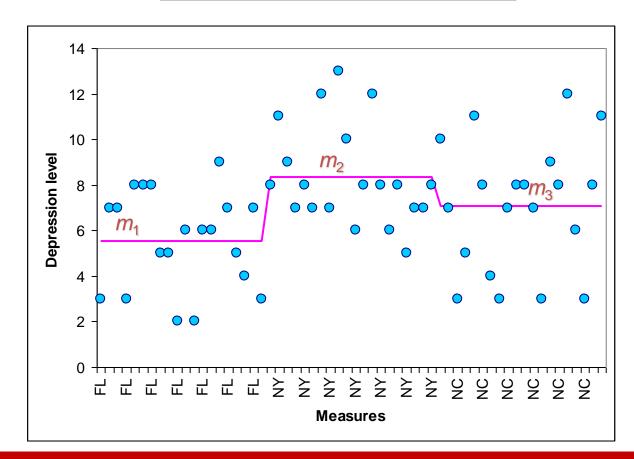
Lecture 10. Analysis of variance (ANOVA)


Example

As part of a long-term study of individuals 65 years of age or older, sociologists and physicians at the Wentworth Medical Center in upstate New York investigated the relationship between geographic location and depression. A sample of 60 individuals, all in reasonably good health, was selected; 20 individuals were residents of Florida, 20 were residents of New York, and 20 were residents of North Carolina. Each of the individuals sampled was given a standardized test to measure depression. The data collected follow; higher test scores indicate higher levels of depression.

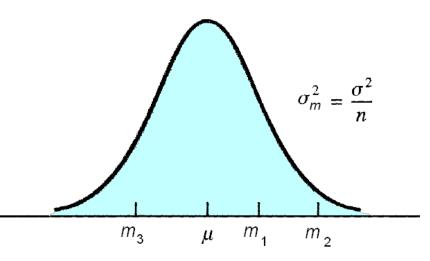
Q: Is the depression level same in all 3 locations?

depression.xls


1. Good health respondents								
Florida	New York	N. Carolina						
3	8	10						
7	11	7						
7	9	3						
3	7	5						
8	8	11						
8	7	8						

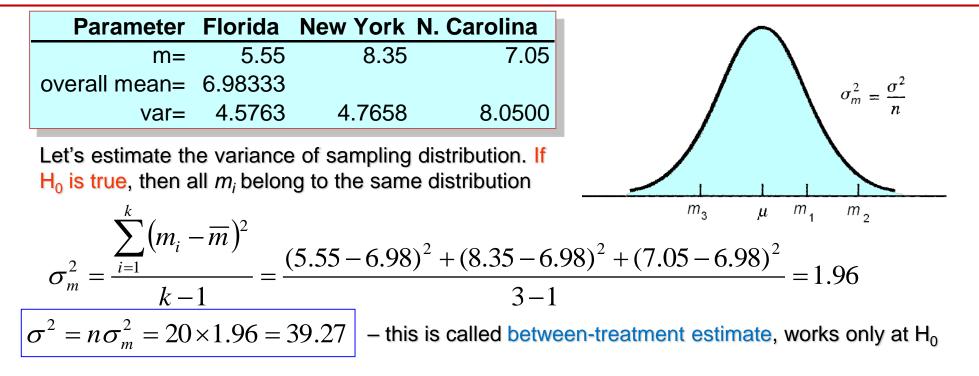
Meaning

 $H_0: \mu_1 = \mu_2 = \mu_3$ $H_a:$ not all 3 means are equal


Assumptions for ANOVA

Assumptions for Analysis of Variance

1. For each population, the response variable is **normally distributed**


2. The variance of the respond variable, denoted as σ^2 is the same for all of the populations.

3. The observations must be independent.

Some Calculations

At the same time, we can estimate the variance just by averaging out variances for each populations: – this is called within-treatment estimate

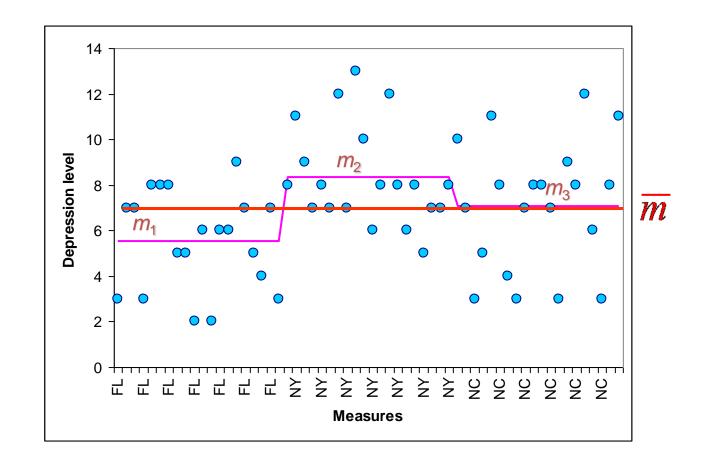
$$\sigma^2 = \frac{\sum_{i=1}^k {\sigma_i}^2}{k} = \frac{4.58 + 4.77 + 8.05}{3} = 5.8$$

Does between-treatment estimate and within-treatment estimate give variances of the same "population"?

Theory Total mean Means for Variances $H_0: \mu_1 = \mu_2 = \dots = \mu_k$ treatments treatments $s_{j}^{2} = \frac{\sum_{i=1}^{j} (x_{ij} - m_{j})^{2}}{\sum_{i=1}^{j} (x_{ij} - m_{j})^{2}}$ H_a : not all *k* means are equal $\sum x_{ij}$ $\sum x_{ij}$ $m_i = \overline{i=1}$ $\overline{m} = \frac{\overline{j=1}}{\overline{i=1}}$ $n_i - 1$ n_{i} n_T $n_T = n_1 + n_2 + \dots + n_k$ due to treatment $SSTR = \sum_{j=1}^{\kappa} n_j (m_j - \overline{m})^2$ Sum squares SSTR MSTR =Mean squares, $\sigma_{beetween}^2$ Test of variance k-1p-value for the equality treatment effect due to error **MSTR** ▶ p-value $SSE = \sum_{i=1}^{n} (n_j - 1) s_j^2$ MSE Sum squares SSE MSE = -Mean squares, σ_{within}^2 $n_T - k$

Lecture 10. Analysis of variance (ANOVA)

The Main Equation


d.f.(SST) = d.f.(SSTR) + d.f.(SSE) $n_T - 1 = (k - 1) + (n_T - k)$

Partitioning

The process of allocating the total sum of squares and degrees of freedom to the various components.

Example

$$SST = SSTR + SSE$$

Example

ANOVA table

A table used to summarize the analysis of variance computations and results. It contains columns showing the source of variation, the sum of squares, the degrees of freedom, the mean square, and the *F* value(s).

In Excel use:

♦ Data → Data Analysis → ANOVA Single Factor

SSTR

Let's perform for dataset 1: "good health"

depression

```
str(Dep)
# consider only healthy
DepGH = Dep[Dep$Health ==
          "good",]
# build 1-way ANOVA model
res1 = aov(Depression ~
        Location, DepGH)
```

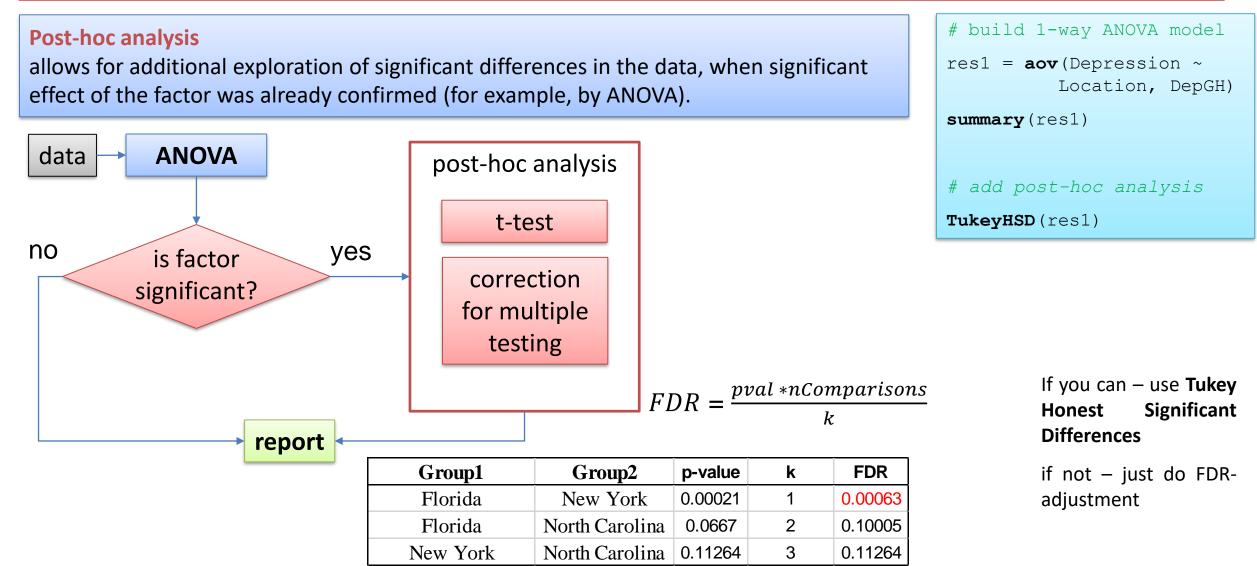
"http://edu.modas.lu/data/

summary(res1)

read dataset

header=T,
sep="\t",

as.is=FALSE)


Dep = **read.table**(

txt/depression2.txt",

ANOVA								# bu
Source of Variation	SS	*	df	MS	F	P-value	F crit	res1
Between Groups	78.533	33	4	2 39.266	67 6.7731	88 0.002296	3.158843	
Within Groups	330.4	45	5	5.7973	68			summ
Total	408.983	33	59	9				
SSE								

Post-hoc Analysis

Factors and Treatments

Factor Another word for the independent variable of interest. Treatments Different levels of a factor.		Factorial experiment An experimental design that allows statist conclusions about two or more factors.	An experimental design that allows statistical					
		good health bad health	<pre>header=T, sep="\t", as.is=FALSE) str(Dep)</pre>					
depression	Factor 1:	Health Florida	<pre># build 2-way ANOVA model res2 = aov(Depression ~ Health + Location+</pre>					
	Factor 2:	Location → New York	Health*Location, Dep)					
North Carolinasummary(res2) μ post-hoc# post-hocDepression = μ + Health + Location + Health×Location + \mathcal{E} TukeyHSD(res2)								
Interaction								

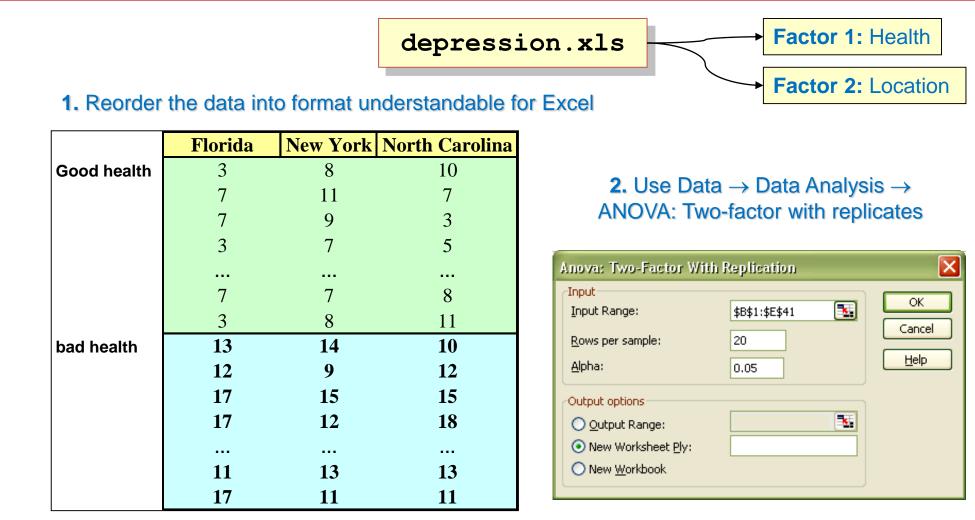
ANOVA

example from Partek™

The effect produced when the levels of one factor interact with

the levels of another factor in influencing the response variable.

2-factor ANOVA with *r* Replicates


Replications The number of times each experimental condition is repeated in an experiment.	a = number of levels of factor A b = number of levels of factor B r = number of replications $n_T =$ total number of observations taken in the experiment; $n_T =$
---	---

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F
Factor A	SSA	<i>a</i> – 1	$MSA = \frac{SSA}{a-1}$	MSA MSE
Factor B	SSB	b - 1	$MSB = \frac{SSB}{b-1}$	MSB MSE
Interaction	SSAB	(a - 1)(b - 1)	$MSAB = \frac{SSAB}{(a-1)(b-1)}$	MSAB MSE
Error	SSE	ab(r - 1)	$MSE = \frac{SSE}{ab(r-1)}$	
Total	SST	$n_T - 1$		

abr

2-factor ANOVA with r Replicates: Example

Example & Effect size

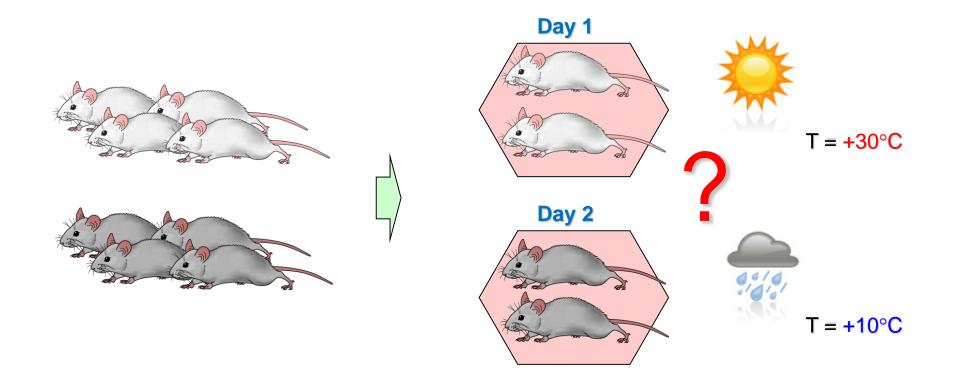
			ANO	VA									
			Sour	ce of Vai	riation	S	S	df	MS		F	P-value	F crit
	Health		Sam	ole		1748	3.033	1	1748.03	33	203.094	4.4E-27	3.92433
	Location)	Colu	mns		7	3.85	2	36.92	25 4	.290104	0.015981	3.075853
	Interaction	on	Intera	action		26.1	1667	2	13.0583	33 1	.517173	0.223726	3.075853
	Error		With	n		ç	81.2	114	8.6070	18			
			Total			28	329.2	119					
					η² or	R ² =	SSx / S	ST		f	= sqrt(F	R ² / (1-R ²))	
	F	statis	tics				R2					Cohen's f	
250		tatict	ice role	ated to	0.7	0.62	portic	on of val	riation	1.4	1.27	Cohen's es	timation
200	203.09				0.6	0102	•	ned by t		1.2			
200		Sig	Inificar	ice	0.5		• • •			1		of effect	SIZE
150					0.4				0.35	0.8			0.73
					0.3				0.55	0.6			
100													
50	_				0.2					0.4		0.16	
		4.29	1.52	1.00	0.1		0.03	0.01		0.2		0.10	
0		5			0	-			<u> </u>	0			<u>+</u>
	Health	Location	nctio	Error		Health	Location	Ictio	Error		Health	Location	Error
	I	Γοσ	Interaction			I	Γοc	Interaction			I	Location	

Example 2

salar:	ies.xls		Sex	Ocupation Financial Manager	Computer Program	neı Pharmacist
			Male	872	747	1105
Salary/week	Occupation	Gender		859	766	1144
872	Financial Manager	Male		1028	901	1085
859	Financial Manager	Male		1117	690	903
1028	Financial Manager	Male		1019	881	998
1117	Financial Manager	Male	Female	519	884	813
1019	Financial Manager	Male	1 0111010	702	765	985
519	Financial Manager	Female		805	685	1006
702	Financial Manager	Female		558	700	1000
805	Financial Manager	Female		591	671	817
558	Financial Manager	Female		591	0/1	017
591	Financial Manager	Female				

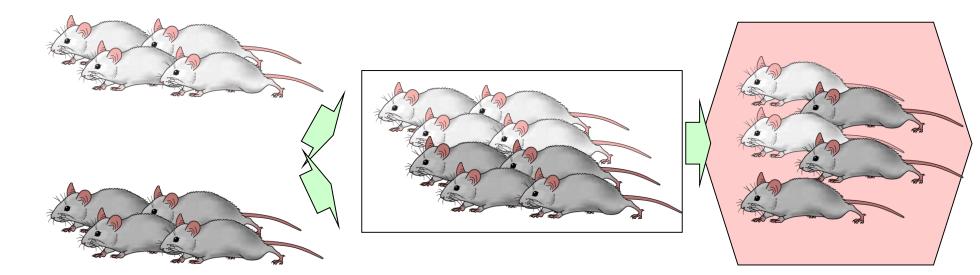
Q: Which factors have significant effect on the salary

Data \rightarrow Data Analysis \rightarrow ANOVA:
Two-factor with replicates


Sourceof Variation	SS	df	MS	F	P-value	F crit
Sample	221880	1	221880	21.254	0.000112	4.25968
Columns	276560	2	138280	13.246	0.000133	3.40283
Interaction	115440	2	57720	5.5289	0.010595	3.40283
Within	250552	24	10439.7			
Итого	864432	29				

Experiments

Aware of Batch Effect !

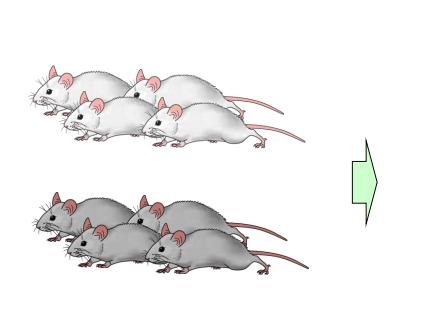

When designing your experiment always remember about various factors which can effect your data: batch effect, personal effect, lab effect...

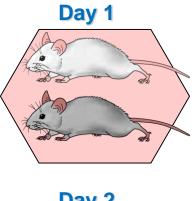
Experiments

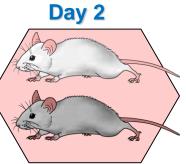
Completely randomized design An experimental design in which the treatments are randomly assigned to the experimental units.

We can nicely randomize:

Day effect


Batch effect




Experiments

Blocking

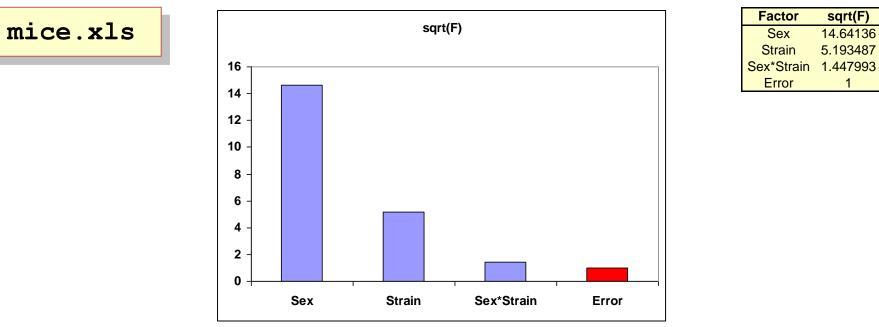
The process of using the same or similar experimental units for all treatments. The purpose of blocking is to remove a source of variation from the error term and hence provide a more powerful test for a difference in population or treatment means.

Experiments

A good suggestion... 🙂

Block what you can block, **randomize** what you cannot, and try to **avoid** unnecessary factors

ANOVA


mice.xls

Q: Does mouse strain affect the weight? Show the effects of sex and strain using ANOVA

	129S1/SvlmJ A/J	A	KR/J	BALB/cByJB	TBR_T+_BU	B/BnJ	C3H/HeJ
1 Female	20.5	23.2	24.6	22.8	28	27.1	21.4
2	20.8	22.4	26	23.5	25.8	24.1	28.2
3	19.8	22.7	31	23.8	26	25.9	23.5
4	21	21.4	25.7	22.7	26.5	25.9	23.9
5	21.9	22.6	23.7	19.7	26.3	26	22.8
6	22.1	20	21.1	26.2	27	27.1	18.4
7	21.3	21.8	23.7	24.1	26	26.2	21.8
8	20.1	20.8	24.5	23.5	28.8	27.5	25
9	18.9	19.5	32.3	23.8	28	30.2	20.1
10 Male	24.7	25.8	42.8	29.3	34.1	36.2	31.2
11	27.2	27.7	32.6	32.2	33	36.9	28.2
12	23.9	29.9	34.8	29.7	38.7	34.4	26.7
13	26.3	24.8	32.8	30	39	34.3	29.3
14	26	22.9	34.8	27	31	31.7	33.1
15	23.3	24.5	32.8	30	32	33	28.2
16	26.5	24.6	33.6	33.1	33.7	33.2	31.2
17	27.4	21.6	30.7	30.6	33.1	34	27.7
18	27.5	26.9	36.5	28.7	32.5	31	27.5

ANOVA Optional Task

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit			
Sample	1206.676	1	1206.676	214.3693	3.36E-26	3.940163			
Columns	759.13	5	151.826	26.97231	6.06E-17	2.309202			
Interaction	59.01074	5	11.80215	2.096684	0.072376	2.309202			
Within	540.38	96	5.628958	B.t.w., so	B.t.w., something is wrong				
Total 2565 197 107 Can you find a problem here? ©									
Total	2565.197	107	Can you						

Thank you for your attention

