

BIOSTATISTICS

Lecture 9 Correction for Multiple Testing

Petr Nazarov

Email: petr.nazarov@lih.lu

Skype: pvn.public

16-04-2021

OUTLINE

Lecture 8

PART I → Test

PART II

- **♦ Multiple testing problem**
- **♦** False discovery rate

MULTIPLE TESTING

Correct Results and Errors

Probability of an error in a multiple test:

1-(0.95)number of comparisons

$$n.o.c = 10 \rightarrow p(error) = 0.4$$

$$n.o.c=100 \rightarrow p(error) = 0.99$$

MULTIPLE TESTING

Example

http://www.xkcd.com/882/

MULTIPLE TESTING

False Discovery Rate

False discovery rate (FDR)

FDR control is a statistical method used in multiple hypothesis testing to correct for multiple comparisons. In a list of rejected hypotheses, FDR controls the expected proportion of incorrectly rejected null hypotheses (type I errors).

Population Condition

Conclusion

	H ₀ is TRUE	H ₀ is FALSE	Total
Accept H ₀ (non-significant)	$oldsymbol{U}$	T	m-R
Reject H ₀ (significant)	$oldsymbol{V}$	\boldsymbol{S}	R
Total	m_0	$m-m_0$	m

$$FDR = E\left(\frac{V}{V+S}\right)$$

False Discovery Rate

Assume we need to perform m = 100 comparisons, and select maximum **FDR** = $\alpha = 0.05$

Independent tests

The Simes procedure ensures that its expected value $\mathbf{E}igg[rac{V}{V+S}igg]$ is less than a given lpha (Benjamini and Hochberg

1995). This procedure is valid when the m tests are independent. Let $H_1\dots H_m$ be the null hypotheses and $P_1\dots P_m$ their corresponding p-values. Order these values in increasing order and denote them by

$$P_{(1)}\dots P_{(m)}$$
 . For a given $lpha$, find the largest k such that $P_{(k)}\leq rac{k}{m}lpha$.

Then reject (i.e. declare positive) all $H_{(i)}$ for $i=1,\ldots,k$.

Note that the mean lpha for these m tests is $\dfrac{lpha(m+1)}{2m}$ which could be used as a rough FDR, or RFDR, "lpha adjusted

for m indep. tests." The RFDR calculation shown here provides a useful approximation and is not part of the Benjamini and Hochberg method; see AFDR below.

False Discovery Rate

Assume we need to perform m = 100 comparisons, and select maximum FDR = $\alpha = 0.05$

k – is rank of p-value (order #)

 $FDR = E\left(\frac{V}{V+S}\right)$

Expected value for FDR < α if

$$P_{(k)} \le \frac{k}{m} \alpha$$

Benjamini-Hochberg (FDR)

Benjamini-Hochberg's FDR →

Other Methods

Bonferroni – simple, but too stringent, not recommended

$$mP_{(k)} \leq \alpha$$

Holm – a more powerful and less stringent version of Bonferroni (ok)

$$(m-k+1)P_{(k)} \le \alpha$$

Example: Random Data

- ◆ Generate 6 columns of normal random variables (1000 points/candidates in each).
- ◆ Consider the first 3 columns as "treatment", and the next 3 columns as "control".
- ◆ Using t-test calculate p-values b/w "treatment" and "control" group. How many candidates have p-value<0.05 ?
- ◆ Calculate FDR. How many candidates you have now?

Example: Acute Lymphoblastic Leukemia

http://edu.modas.lu/data

all data.xls

Acute lymphoblastic leukemia (ALL), is a form of leukemia, or cancer of the white blood cells characterized by excess lymphoblasts.

all_data.xls contains the results of full-trancript profiling for ALL patients and healthy donors using Affymetrix microarrays. The data were downloaded from ArrayExpress repository and normalized. The expression values in the table are in log₂ scale.

Let us analyze these data:

- ◆ Calculate log-ratio (logFC) for each gene
- Calculate the p-value based on t-test for each gene
- ◆ Perform the FDR-based adjustment of the p-value.
 Calculate the number of up and down regulated genes with FDR<0.01
- ♦ How would you take into account logFC?

Example score: $score = -\log(adj.p.value) \cdot |logFC|$

FDR (adj. p-value) is a main measure. Other only help...

look for "tetraspanin 7" + leukemia in google ☺

Results are never perfect... Deeper investigation of the ALL subgroup should be recommended.

QUESTIONS?

Thank you for your attention

