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il OUTLINE

UNIVERSITE DU Lecture 8
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PART I

9 Interval estimation for population variance
@ variance sampling distribution, 2 statistics
4 calculation of interval estimation
@ hypothesis tests for a population variance

@ Comparison of variances of two populations
¢ F-statistics
¢ formulation of hypotheses and testing

PART I

@ y2criterion of goodness of fit
< multinomial distribution
@ continuous distributions

® Independence
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|||||I|| INTERVAL ESTIMATION FOR VARIANCE

UNIVERSITE DU Variance Sampling Distribution
LUXEMBOURG
! 2
Variance - population 2 Y(xi —,u)
A measure of variability based on the squared o = N
deviations of the data values about the mean.
2
sample §? Z(Xi —m)
n-1
The interval estimation for variance is build using the following measure:
2
S
(n-1)=
Sampling distribution of (n-1)s?/c? o
Whenever a simple random sample of size n is
selected from a normal population, the
sampling distribution of (n-1)s?/c? has a
chi-square distribution (y2) with n-1 degrees of 5
freedom. S 5
(n-1)=
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|||||I|| INTERVAL ESTIMATION FOR VARIANCE

UNIVERSITE DU v? Distribution
LUXEMBOURG

With 2 degrees of freedom

With 5 degrees of freedom

With 10 degrees of freedom

Probability density function for %

y , (n—1)s?
0 0’
2 . . . k
X d.lstrlbutlon works only fo.r ng:k _ Z Xi2 where x; — normal
sampling from normal population =
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|||||I|| INTERVAL ESTIMATION FOR VARIANCE

UNIVERSITE DU v? Probabilities in Table and Excel
LUXEMBOURG
Left tailed (standard) Right tailed (RT)
N \ x2 distribution for d.f. = 35 /
‘:; ,
Area or > 8+
probability Area or &y
/2 probability 5
1-a/2 § T T T T T
0 20 40 80 o
2 2
X a2 £ 1-o2
Degrees Area in Upper Tail
fFreedom .99 975 95 90 10 05 025 01
— 2 0
= CHISQ.DIST (x ;g NN— 1, true ) 1 000 | 001 | 004 | 016§ 2706 ] 3841 | 5024 | 663
2 020 | 051 103 | 210 | 4605 | 5991 | 7378 | 9210
-— 2 3 15 216 352 584 6.251 7.815 9.348 11.345
= CHISQ.DIST.RT (X y N — 1 ) 4 297 | 484 | 711 | 1064 | 7779 f 9488 | 11143 | 1327
5 554 | 831 | 1145 | 1610 | 9236 | 11070 | 12832 | 15086
— — 6 872 | 1237 | 1635 | 2204 | 10645 | 12592 | 14449 | 16312
CHISQ.INV (a/ 2 r I 1 ) 7 1239 | 1690 | 2167 | 2833 | 12017 | 14067 | 16013 | 18475
8 1647 | 2180 | 2733 | 3490 | 13362 | 15507 | 17.535 | 20.0%
= CHISQ.INV.RT ((1/2 y N— 1 ) 9 2088 | 2700 | 3.325 | 4.168 | 14684 | 16919 | 19.023 | 21666
10 2558 | 3247 | 3940 | 4865 | 15987 | 18307 | 20483 | 23209
11 3053 | 3816 | 4575 | 5578 | 17275 | 19.675 | 21920 | 24725
12 3571 | 4404 | 5226 | 6304 | 18549 | 21026 | 23337 | 26217
13 4107 | 5000 | 5892 | 7041 | 19812 | 22362 | 24736 | 2768
. 0 - 14 4660 | 5620 | 65711 7790 | 21.064 | 23685 | 26119 | 20.14]
PChlSq (X = Ay df =n l) 15 5229 | 6262 | 7.261 | 8547 | 22307 | 24996 | 27.488 | 30578
16 5812 | 6908 | 7.962 | 9312 | 23542 | 26296 | 28845 | 32000
. B _ _ 17 6408 | 7.564 | 8.672 | 10085 | 24769 | 27.587 | 30.191 | 33.409
thlSq (P = a/2 , df = n-1 ) 18 7015 | 8231 | 9390 | 10865 | 25980 | 28.869 | 31526 | 34805
19 7633 | 8907 | 10117 | 11651 | 27.204 | 30.144 | 32852 | 36.19]
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|||||I|| INTERVAL ESTIMATION FOR VARIANCE

UNIVERSITE DU x? Distribution for Interval Estimation
LUXEMBOURG
2 | |
S % With 2 degrees of freedom
2 : With 5 degrees of freedom
7 =n-1)= |
G ,E‘ With 10 degrees of freedom
v ? distribution for d.f. = 19
0.95 of the
0.025 possible y? value
e
0 8.907 32.852 gchisq(0.025,19)
2 2 :
X 0025 X 0975 gchisg(0.975,19)
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|||||I|| INTERVAL ESTIMATION FOR VARIANCE

UNIVERSITE DU Interval Estimation
LUXEMBOQURG

%2 distribution for d.f. = 35

Density
0.00 001 0.02 0.03 004 0.05

(n_l)sz <02 < (n_l)sz 1 T T | T
2 - - 2 0 20 40 60 g0 X
Zl_% Z%

Suppose sample of n = 36 coffee cans is selected and m = 2.92 and s = 0.18 lbm
IS observed. Provide 95% confidence interval for the standard deviation

(36 —1)0.18° c 2 (36 —1)0.18° ¢ = CHISQ.INV(a/2, n-1) gchisq(0.025,36-1)
53.203 =0 = 20.569 ¢ = CHISQ.INV.RT(a/2, n-1) gqchisq(1-0.025,36-1)
0.0213 < o2 <0.0551 0.146 < 0 <0.235
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|||||I|| INTERVAL ESTIMATION FOR VARIANCE

UNIVERSITE DU Hypotheses about Population Variance
LUXEMBOURG
H,: 02 < const H,: o2 > const H,: o2 = const
H,: 62 > const H,: 62 < const H,: o2 # const
Lower Tail Test | Upper Tail Test Two-Tailed Test
Hypotheses H,:0% >0 H,:0% <o H,:0° =0
H,:0° <o} H,:0°>0o¢ H,:0° # 0o
Test Statistic n—1)s° n—1)s n-1)s’
Zz:( 2) Zz:( 2) Zz:( 2)
Oy Oy Oy
Rejection Rule: Reject Hyif Reject Hy if Reject Hy if
p-Value Approach p-value < a p-value < a p-value < a
Rejection Rule: Reject Hyif Reject Hyif Reject Hy if
Critical Value Approach P E<r 77> 4P XS Haay OFIE 22 42,
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||I|i,||| VARIANCES OF TWO POPULATIONS

UNIVERSITE DU Sampling Distribution
LUXEMBOURG
In many statistical applications we need a comparison between variances of two =
populations. In fact well-known ANOVA-method is base on this comparison. E— 5_1 Distributions
The statistics is build for the following measure: S§
= F.DIST(x, dfl,
df2, TRUE)
Sampling distribution of s,%/s,> when c,%= 6,2 = F.INV(p, dfl,
Whenever a independent simple random samples of size n, and n, are selected from df2, TRUE)
two normal populations with equal variances, the sampling of s,?/s,? has F-distribution
with n;-1 degree of freedom for numerator and n,-1 for denominator. pf (x,dfl,df2,..)
F-distribution for 20 d.f. in numerator and 20 d.f. in denominator qgf (p,dfl,df2,..)
g Tests
g = F.TEST (datal,data?)
& 0.05 var.test(datal,data?)
0 212 F
F

0.05
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||I|i,||| VARIANCES OF TWO POPULATIONS

UNIVERSITE DU Hypotheses about Variances of Two Populations
LUXEMBOURG
‘é . 2 2 . 2 — ~ 2
c o~ 2 2 C o 2 2
1 s H,:0,°>0, H,: 0, # 0,
| Upper Tail Test Two-Tailed Test
Hypotheses H,:0l <o) H,:0f =03
Tests
H,:00>05 H, .0l # 07
Note: Population 1 has the = F.TEST (datal,data?)
lager sample variance
icti 2 2
Test Statistic o> FoS var.test (datal,data?)
S S,
Rejection Rule: Reject Hgif Reject Hyif
p-Value Approach p-value < a p-value < a
Rejection Rule: Reject Hoif F>F, Reject Hoif F>F,
Critical Value Approach
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||I|i,||| VARIANCES OF TWO POPULATIONS

UNIVERSITE DU Example
LUXEMBOURG
schoolbus . x1s Dullus County Schools is renewing :1ts school !:rus service contract for the coming yex
and must select one of two bus companies, the Milbank Coempany or the Gulf Park Con-
: pany. We will use the variance of the arrival or pickup/delivery times as a primary measug
# Milbank Gulf Park of the quality of the bus service. Low variance values indicate the more consistent and higher-
1 359 21.6 - c - c . c c : .
5 299 20.5 guality service. If the variances of arrival times associated with the two services are equa
3 312 233 Dullus School administrators will select the company offering the better financial terms
4 162 18.8 However, if the sample data on bus arrival times for the two companies indicate a significant
5 190 17.2 difference between the variances, the administrators may want to give special consideratin
g 12'2 178'76 to the company with the better or lower variance service, The appropnate hypotheses follos
8 222 18.7
9 199 20.4 Hy 07 = 0}
10 164 22.4 Hy: gf =+ g§
11 5.0 23.1
12 254 19.8 + ' : S . -
wa A g If H,, can be rejected, the conclusion of unequal service quality is appropriate. We will us
14 227 171 a level of significance of ¢ = .10 to conduct the hypothesis test.
15 18.0 27.9
16 28.1 20.8
17 121
18 214
19 134
20 229
21  21.0
22 101
23 230
24 194
25 152
26 282
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||I|i,||| VARIANCES OF TWO POPULATIONS

UNIVERSITE DU Example
LUXEMBOURG
schoolbus 1. Let us start from estimation of the variances for 2 data sets
% Milbank Gulf Park interval estimation (optionally)
1 3y s Milbank: s,%=48, n, =26 Milbank: o2 ~ 48 (29.5:91.5)
2 299 20.5 _ _ _
3 312 23.3 Gulf Park: s,%=20, n, =16 Gulf Park: ©,2~ 20 (10.9+47.9)
4 16.2 18.8
5 19.0 17.2
6 15.9 7.7
7 18.8 18.6 ..
8 229 18.7 2. Let us calculate the F-statistics
9 19.9 20.4 2
10 16.4 22.4 S| 48
11 50 23.1 F = == 2.40
12 254 19.8 S5 20
13 14.7 26.0
14 22.7 17.1 —
P 979 3. ... and p-value = 0.08
16 28.1 20.8
17 12.1
18 214 p-value =0.08 <a =0.1
19 13.4
20 22.9
;; ié‘? In Excel use one of the functions: In R use one of solutions:
23 23.0
o 0 ¥ = 2*F.DIST.RT(F,n,-1,n,-1) 2% (1-p£(2.4,25,15))
o 209 $ = F.TEST(datal,data2) var.test (datal,data2)
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Goodness of Fit and
Independence
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TIRIT TEST OF GOODNESS OF FIT

UNIVERSITE DU
LUXEMBOURG

Multinomial Population

Multinomial population

A population in which each element is assigned to one and only one of several categories. The
multinomial distribution extends the binomial distribution from two to three or more outcomes.

Contingency table = Crosstabulation
Contingency tables or crosstabulations
are used to record, summarize and
analyze the relationship between two
or more categorical (usually) variables.

The new treatment for a disease is tested on 200 patients.
The outcomes are classified as:

A — patient is completely treated
B — disease transforms into a chronic form
C — treatment is unsuccessful ®

In parallel the 100 patients treated with standard methods
are observed

Category  Experimental Control
A 94 38
B 42 28
C 64 34
Sum 200 100
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4 The proportions for 3 “classes” of patients
with and without treatment are:

Experimental Control

nez’ n.=100

Are the proportions significantly different
in control and experimental groups?




TIRIT TEST OF GOODNESS OF FIT

UNIVERSITE DU Goodness of Fit
LUXEMBOQURG

Goodness of fit test # The proportions for 3 “classes” of patients
A statistical test conducted to determine whether to with and without treatment are:

reject a hypothesized probability distribution for a Experimental Control

population. b
Model — our assumption concerning the distribution, ”
which we would like to test. n;=200 n,=100

Are the proportions significantly different
in control and experimental groups?

Observed frequency — frequency distribution for
experimentally observed data, f;

Test statistics for

Expected frequency — frequency distribution, which goodness of fit

we would expect from our model, €, < (f 2
e (fi=e)

Hypotheses for the test: i1 6

H,: the population follows a multinomial distribution x> has k-1 degree of freedom
with the probabilities, specified by model

At least 5 expected must be in
H,: the population does not follow ... model each category!
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TIRIT TEST OF GOODNESS OF FIT

UNIVERSITE DU Example
LUXEMBOURG
The new treatment for a disease is tested on 200 patients. Category  Experimental Control # input data
The outcomes are classified as: A 94 38 Tab = cbind(c(94,42,64),
A — patient is completely treated B 42 28 c(38,28,34))
B — disease transforms into a chronic form C 64 34 colnames (Ta?) - )
C — treatment is unsuccessful ® Sum 200 100 eftespt, etel
In parallel the 100 patients treated with standard methods _
are observed rownames (Tab) =
C ("A", "B", "C")
1. Select_the model and calculate expected 2. Compa_lre expected frequer_mles with 4 control defines Model
frequencies the experimental ones and build 2 mod=Tab[,2]/sum(Tab[,2])
Let’s use control group (classical =y ie) I
. ER es ode or 'exp'
treatment) as a model, then: chisq.test (Tab[,1], p=mod)
Catedor Control Model for Expected || Experimental Cat te)2/ 3. Calculate .
99 | frequencies|  control freq., e freq., f ategory | (f-e)2/e p-value for x* with
A 38 0.38 76 94 A 4.263 d.f. =k-1
B 28 0.28 56 42 B 3.500 /
= 34 0.34 68 64 C 0.235
Sum 100 1 200 200 Chi2 7.998 Here k=3 => df=2

& = CHISQ.DIST.RT(%?,d.f.)

p-value = 0.018, reject H,
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TIRIT TEST OF INDEPENDENCE

UNIVERSITE DU Goodness of Fit for Independence Test: Example
LUXEMBOURG

Alber's Brewery manufactures and distributes three types of beer: white, regular, and
dark. In an analysis of the market segments for the three beers, the firm's market
research group raised the question of whether preferences for the three beers differ
among male and ferale beer drinkers. If beer preference is independent of the gender
of the beer drinker, one advertising campaign will be initiated for all of Alber's beers.
However, if beer preference depends on the gender of the beer drinker, the firm will tailor
its promotions to different target markets.

beer Hy: Beer preference is independent of
the gender of the beer drinker

H,: Beer preference is not independent

of the gender of the beer drinker

sex\beer White Regular Dark Total
Male 20 40 20 80
Female 30 30 10 70
Total 50 70 30 150

Lecture 8. Inferences about population variance. Goodness of fit and independence




TIRIT TEST OF INDEPENDENCE

UNIVERSITE DU Goodness of Fit for Independence Test: Example
LUXEMBOURG
1. Build model sex\beer White Regular Dark Fotal # input data
' : Male 20 40 20 80 Tab = rbind(c(20,40,20)
~ assuming Female 30 30 10 c(30,30,10) )
independence Total 50 70 30 | 150 colnames (Tab) = c("white",
"regular", "dark")
White. Regular Dark Total FAGEMESIED) = )
Model [0.3333] 0.4667 _ 0.2000 1 c("male”, "female”)
¥_/ Tab
2. Transfer the model into expected frequencies, multiplying model value by number in group # it is simple:
. chisq.test (Tab)
sex\beer | MWhite.,  Regular Dark Total _ _
Male 26.67 37.33 16.00 30 g, = (ROWI Total)(Cqu.mn jTOtaI)
Female : 32.67 14.00 70 Sample Size
Total 50 70 30 150

3. Build 2 statistics 4. Calculate p-value

Tm (f__ _e__)z 2 distribution with 4 = CHISQ.DIST.RT (%%, d.f.)
y2 = ZZ& d.f.=(n - 1)(m - 1),

i €ij provided that the expected
frequencies are 5 or more
¥? =6.122 for all categories.

p-value = 0.047, reject H,
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|||||I|| TEST FOR CONTINUOUS DISTRIBUTIONS

UNIVERSITE DU Test for Normality: Example
LUXEMBOURG

Chemline hires approximately 400 new employees annually for its four plants. The personnel director asks whether a normal
distribution applies for the population of aptitude test scores. If such a distribution can be used, the distribution would be
helpful in evaluating specific test scores; that is, scores in the upper 20%, lower 40%, and so on, could be identified quickly.
Hence, we want to test the null hypothesis that the population of test scores has a normal distribution. The study will be
based on 50 results.

- Mean 68.42
chemline
\ Standard Deviation 10.4141
Aptitude test scores Sample Variance  108.4527
71 86 56 61 65 Count 50

60 63 76 69 56
50 79 56 74 93
82 80 90 80 73
85 62 64 54 54 Ty
65 54 63 73 58 ean 842

77 56 65 76 64 HOZ The population of test scores has a normal distribution
61 84 70 53 79 with mean 68.42 and standard deviation 10.41

79 61 62 61 65 _ _ -
66 70 68 76 71 H_: the population does not have a mentioned distribution
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|||||I|| TEST FOR CONTINUOUS DISTRIBUTIONS

UNIVERSITE DU Test for Normality: Example
LUXEMBOURG
Lower 10%: 68.42 — 1.28(10.41) = 55.10 P
. Lower 20%: 68.42 — .84(10.41) = 59.68 T .
chemline bewempmemcen /TN R: more advanced
Mid-score: 68.42 +  0(10.41) = 68.42 /
Upper 40%: 68.42 + 25(1041) = 71.02 g
er 30%: 42+ 5201041) =73, #input data
Mean 68.42 gﬁia 38;: 22:; + .2488.33 = ;;?Z : * Note: each interval has _p
Standard Deviation 10.4141|  Upper 10%: 68.42 + 1.28(104) = 8174 /| a probability of 0.10 x = scan(
Sample Variance ~ 108.4527 ‘ "http://edu.modas.1
Count 50 u/data/txt/chemline
.txt", skip=1)
Observed Expected ]

Bin frequency frequency |: | #Shapiro-wilk
55.1 3) 3) S ¥ DYoo e & shapiro.test (x)
59.68 5 5 n R E8E8REL R X
sslil 8 5 , (f—e )| | 42 distribution with d.f.=k—p -1, #Kolmogorov-Smirnov
65.82 6 5 Yy =) — ks.test (x, "pnorm",
68.42 2 5 EN where p — number of estimated mean=mean (x) ,
71.02 5 5 parameters, k — number of bins sd=sd (x))
73.83 2 5 : :
7716 5 5 p = 2 includes mean and variance #Jarque-Bera
81 74 5 5 df.=10-2-1 p-value :_0-41’ library (tseries)
M(.)re 6 5 x*=7.2 cannot reject Hy jarque.bera. test (x)
Total 50 o0 More precise: x2= 6.4 @

https://datasharkie.com/how-to-test-for-normality-in-r/
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Thank you for your
attention
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