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OUTLINE
Lecture 8

PART I

Interval estimation for population variance

variance sampling distribution, 2 statistics

calculation of interval estimation

hypothesis tests for a population variance

Comparison of variances of two populations

F-statistics

formulation of hypotheses and testing

PART II

2 criterion of goodness of fit

multinomial distribution

continuous distributions

Independence 
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INTERVAL ESTIMATION FOR VARIANCE
Variance Sampling Distribution

Sampling distribution of (n-1)s2/2

Whenever a simple random sample of size n is 
selected from a normal population, the 
sampling distribution of (n-1)s2/2 has a
chi-square distribution (2) with n-1 degrees of 
freedom.

Variance
A measure of variability based on the squared 
deviations of the data values about the mean.
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The interval estimation for variance is build using the following measure:
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INTERVAL ESTIMATION FOR VARIANCE
2 Distribution

2 distribution works only for 
sampling from normal population
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INTERVAL ESTIMATION FOR VARIANCE
2 Probabilities in Table and Excel

= CHISQ.DIST(2, n-1, true)

= CHISQ.DIST.RT(2, n-1)

= CHISQ.INV(/2, n-1)

= CHISQ.INV.RT(/2, n-1)

Right tailed (RT)Left tailed (standard)

pchisq(x = 2, df = n-1)

qchisq(p = /2, df = n-1)
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INTERVAL ESTIMATION FOR VARIANCE
2 Distribution for Interval Estimation
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2 distribution for d.f. = 19

qchisq(0.025,19)

qchisq(0.975,19)
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INTERVAL ESTIMATION FOR VARIANCE
Interval Estimation
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Suppose sample of n = 36 coffee cans is selected and m = 2.92 and s = 0.18 lbm

is observed. Provide 95% confidence interval for the standard deviation
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= CHISQ.INV(/2, n-1)

= CHISQ.INV.RT(/2, n-1)

qchisq(0.025,36-1)

qchisq(1-0.025,36-1)
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INTERVAL ESTIMATION FOR VARIANCE
Hypotheses about Population Variance

H0: 
2  const

Ha: 
2 > const

H0: 
2  const

Ha: 
2 < const

H0: 
2 = const

Ha: 
2  const

 Lower Tail Test Upper Tail Test Two-Tailed Test 
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Rejection Rule: 

p-Value Approach 

Reject H0 if  

p-value   

Reject H0 if  

p-value   

Reject H0 if  

p-value   

Rejection Rule: 

Critical Value Approach 

Reject H0 if  
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VARIANCES OF TWO POPULATIONS
Sampling Distribution

In many statistical applications we need a comparison between variances of two

populations. In fact well-known ANOVA-method is base on this comparison.

The statistics is build for the following measure:
2
2

2
1

s

s
F 

Sampling distribution of s1
2/s2

2 when 1
2= 2

2

Whenever a independent simple random samples of size n1 and n2 are selected from 
two normal populations with equal variances, the sampling of s1

2/s2
2 has F-distribution

with n1-1 degree of freedom for numerator and n2-1 for denominator. 

F-distribution for 20 d.f. in numerator and 20 d.f. in denominator

= F.DIST(x, df1,

df2,TRUE)

= F.INV(p, df1,

df2,TRUE)

var.test(data1,data2)

pf(x,df1,df2,…)

qf(p,df1,df2,…)

Distributions

= F.TEST(data1,data2)

Tests
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VARIANCES OF TWO POPULATIONS
Hypotheses about Variances of Two Populations

H0: 1
2  2

2

Ha: 1
2 > 2

2

H0: 1
2 = 2

2

Ha: 1
2  2

2

 Upper Tail Test Two-Tailed Test 

Hypotheses 2
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Note: Population 1 has the 
lager sample variance 
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Rejection Rule: 

p-Value Approach 

Reject H0 if  

p-value   

Reject H0 if  

p-value   

Rejection Rule: 

Critical Value Approach 

Reject H0 if FF   Reject H0 if FF   

 

var.test(data1,data2)

= F.TEST(data1,data2)

Tests
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VARIANCES OF TWO POPULATIONS
Example

schoolbus.xls 

# Milbank Gulf Park

1 35.9 21.6

2 29.9 20.5

3 31.2 23.3

4 16.2 18.8

5 19.0 17.2

6 15.9 7.7

7 18.8 18.6

8 22.2 18.7

9 19.9 20.4

10 16.4 22.4

11 5.0 23.1

12 25.4 19.8

13 14.7 26.0

14 22.7 17.1

15 18.0 27.9

16 28.1 20.8

17 12.1

18 21.4

19 13.4

20 22.9

21 21.0

22 10.1

23 23.0

24 19.4

25 15.2

26 28.2



Lecture 8. Inferences about population variance. Goodness of fit and independence 12

VARIANCES OF TWO POPULATIONS
Example

schoolbus

# Milbank Gulf Park

1 35.9 21.6

2 29.9 20.5

3 31.2 23.3

4 16.2 18.8

5 19.0 17.2

6 15.9 7.7

7 18.8 18.6

8 22.2 18.7

9 19.9 20.4

10 16.4 22.4

11 5.0 23.1

12 25.4 19.8

13 14.7 26.0

14 22.7 17.1

15 18.0 27.9

16 28.1 20.8

17 12.1

18 21.4

19 13.4

20 22.9

21 21.0

22 10.1

23 23.0

24 19.4

25 15.2

26 28.2

1. Let us start from estimation of the variances for 2 data sets

Milbank:    s1
2 = 48,   n1 = 26

Gulf Park:  s2
2 = 20,  n2 = 16

Milbank:    1
2  48  (29.591.5)

Gulf Park:  2
2  20  (10.947.9)

interval estimation (optionally)

2. Let us calculate the F-statistics

40.2
20

48
2
2

2
1 

s

s
F

3. … and p-value = 0.08

In Excel use one of the functions:

= 2*F.DIST.RT(F,n1-1,n2-1)

= F.TEST(data1,data2)

p-value = 0.08 <  = 0.1

In R use one of solutions:

2*(1-pf(2.4,25,15))

var.test(data1,data2)
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Goodness of Fit and 

Independence 
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TEST OF GOODNESS OF FIT
Multinomial Population

Multinomial population 
A population in which each element is assigned to one and only one of several categories. The 
multinomial distribution extends the binomial distribution from two to three or more outcomes.

The proportions for 3 “classes” of patients 

with and without treatment are:

Experimental                   Control

ne=200                           nc=100 

Are the proportions significantly different

in control and experimental groups? 

The proportions for 3 The proportions for 3 ““classesclasses”” of patients of patients 

with and without treatment are:with and without treatment are:

Experimental                   ControlExperimental                   Control

nnee=200                           =200                           nncc=100 =100 

Are the proportions Are the proportions significantly differentsignificantly different

in control and experimental groups? in control and experimental groups? 

21%

32%

47%

21%

32%

47%
38%

34%

28%
38%

34%

28%

The proportions for 3 “classes” of patients 

with and without treatment are:

Experimental                   Control

ne=200                           nc=100 

Are the proportions significantly different

in control and experimental groups? 

The proportions for 3 The proportions for 3 ““classesclasses”” of patients of patients 

with and without treatment are:with and without treatment are:

Experimental                   ControlExperimental                   Control

nnee=200                           =200                           nncc=100 =100 

Are the proportions Are the proportions significantly differentsignificantly different

in control and experimental groups? in control and experimental groups? 

21%

32%

47%

21%

32%

47%
38%

34%

28%
38%

34%

28%

The new treatment for a disease is tested on 200 patients.

The outcomes are classified as:

A – patient is completely treated

B – disease transforms into a chronic form

C – treatment is unsuccessful

In parallel the 100 patients treated with standard methods

are observed

Contingency table = Crosstabulation
Contingency tables or crosstabulations 
are used to record, summarize and 
analyze the relationship between two 
or more categorical (usually) variables.

Category Experimental Control

A 94 38

B 42 28

C 64 34

Sum 200 100
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TEST OF GOODNESS OF FIT
Goodness of Fit

The proportions for 3 “classes” of patients 

with and without treatment are:

Experimental                   Control

ne=200                           nc=100 

Are the proportions significantly different

in control and experimental groups? 

The proportions for 3 The proportions for 3 ““classesclasses”” of patients of patients 

with and without treatment are:with and without treatment are:

Experimental                   ControlExperimental                   Control

nnee=200                           =200                           nncc=100 =100 

Are the proportions Are the proportions significantly differentsignificantly different

in control and experimental groups? in control and experimental groups? 

21%

32%

47%

21%

32%

47%
38%

34%

28%
38%

34%

28%

The proportions for 3 “classes” of patients 

with and without treatment are:

Experimental                   Control

ne=200                           nc=100 

Are the proportions significantly different

in control and experimental groups? 

The proportions for 3 The proportions for 3 ““classesclasses”” of patients of patients 

with and without treatment are:with and without treatment are:

Experimental                   ControlExperimental                   Control

nnee=200                           =200                           nncc=100 =100 

Are the proportions Are the proportions significantly differentsignificantly different

in control and experimental groups? in control and experimental groups? 

21%

32%

47%

21%

32%

47%
38%

34%

28%
38%

34%

28%

Goodness of fit test 
A statistical test conducted to determine whether to 
reject a hypothesized probability distribution for a 
population.

Model  our assumption concerning the distribution, 
which we would like to test.

Observed frequency  frequency distribution for 
experimentally observed data, fi

Expected frequency  frequency distribution, which 
we would expect from our model, ei  







k

i i

ii

e

ef

1

2

2

Test statistics for 

goodness of fit

2 has k1 degree of freedom

Hypotheses for the test:

H0: the population follows a multinomial distribution

with the probabilities, specified by model

Ha: the population does not follow … model

At least 5 expected must be in 
each category!
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TEST OF GOODNESS OF FIT
Example

The new treatment for a disease is tested on 200 patients.

The outcomes are classified as:

A – patient is completely treated

B – disease transforms into a chronic form

C – treatment is unsuccessful 

In parallel the 100 patients treated with standard methods

are observed

1. Select the model and calculate expected 

frequencies

Let’s use control group (classical 

treatment) as a model, then:

3. Calculate 

p-value for 2 with 

d.f. = k1

p-value = 0.018, reject H0

2. Compare expected frequencies with

the experimental ones and build 2

 






k

i i

ii

e

ef

1

2

2

Category
Control 

frequencies

Model for 

control

Expected 

freq., e

A 38 0.38 76

B 28 0.28 56

C 34 0.34 68

Sum 100 1 200

Experimental 

freq., f

94

42

64

200

Category (f-e)2/e

A 4.263

B 3.500

C 0.235

Chi2 7.998

Category Experimental Control

A 94 38

B 42 28

C 64 34

Sum 200 100

= CHISQ.DIST.RT(2,d.f.)

Here k=3 => df=2

# input data

Tab = cbind(c(94,42,64),

c(38,28,34))

colnames(Tab) = 

c("exp","ctrl")

rownames(Tab) = 

c("A","B","C")

# control defines Model

mod=Tab[,2]/sum(Tab[,2])

# test Model for 'exp'

chisq.test(Tab[,1],p=mod)
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TEST OF INDEPENDENCE
Goodness of Fit for Independence Test: Example

Alber's Brewery manufactures and distributes three types of beer: white, regular, and

dark. In an analysis of the market segments for the three beers, the firm's market

research group raised the question of whether preferences for the three beers differ

among male and female beer drinkers. If beer preference is independent of the gender

of the beer drinker, one advertising campaign will be initiated for all of Alber's beers.

However, if beer preference depends on the gender of the beer drinker, the firm will tailor

its promotions to different target markets.

H0: Beer preference is independent of

the gender of the beer drinker

Ha: Beer preference is not independent

of the gender of the beer drinker

sex\beer White Regular Dark Total

Male 20 40 20 80

Female 30 30 10 70

Total 50 70 30 150

beer 



Lecture 8. Inferences about population variance. Goodness of fit and independence 18

TEST OF INDEPENDENCE
Goodness of Fit for Independence Test: Example

White Regular Dark Total

Model 0.3333 0.4667 0.2000 1

sex\beer White Regular Dark Total

Male 20 40 20 80

Female 30 30 10 70

Total 50 70 30 150

1. Build model 

assuming 

independence

2. Transfer the model into expected frequencies, multiplying model value by number in group

sex\beer White Regular Dark Total

Male 26.67 37.33 16.00 80

Female 23.33 32.67 14.00 70

Total 50 70 30 150

  
SizeSample

TotaljColumnTotaliRow
eij 

 





n

i

m

j ij

ijij

e

ef
2

2

3. Build 2 statistics

2 distribution with 

d.f.=(n  1)(m  1), 

provided that the expected 

frequencies are 5 or more 

for all categories.2 =6.122

4. Calculate p-value

p-value = 0.047, reject H0

= CHISQ.DIST.RT(2,d.f.)

# input data

Tab = rbind(c(20,40,20),

c(30,30,10))

colnames(Tab) = c("white", 

"regular","dark")

rownames(Tab) =  

c("male","female")

Tab

# it is simple:

chisq.test(Tab)
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TEST FOR CONTINUOUS DISTRIBUTIONS
Test for Normality: Example

Chemline hires approximately 400 new employees annually for its four plants. The personnel director asks whether a normal

distribution applies for the population of aptitude test scores. If such a distribution can be used, the distribution would be

helpful in evaluating specific test scores; that is, scores in the upper 20%, lower 40%, and so on, could be identified quickly.

Hence, we want to test the null hypothesis that the population of test scores has a normal distribution. The study will be

based on 50 results.

Aptitude test scores

71 86 56 61 65

60 63 76 69 56

55 79 56 74 93

82 80 90 80 73

85 62 64 54 54

65 54 63 73 58

77 56 65 76 64

61 84 70 53 79

79 61 62 61 65

66 70 68 76 71

chemline

H0: The population of test scores has a normal distribution

with mean 68.42 and standard deviation 10.41

Ha: the population does not have a mentioned distribution

Mean 68.42

Standard Deviation 10.4141

Sample Variance 108.4527

Count 50
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TEST FOR CONTINUOUS DISTRIBUTIONS
Test for Normality: Example

chemline

Mean 68.42

Standard Deviation 10.4141

Sample Variance 108.4527

Count 50

Bin

Observed 

frequency

Expected 

frequency

55.1 5 5

59.68 5 5

63.01 9 5

65.82 6 5

68.42 2 5

71.02 5 5

73.83 2 5

77.16 5 5

81.74 5 5

More 6 5

Total 50 50

 






k

i i

ii

e

ef

1

2

2
2 distribution with d.f.= k  p  1,

where p – number of estimated 
parameters, k – number of bins

p = 2  includes mean and variance

d.f. = 10  2  1

2 = 7.2

p-value = 0.41, 

cannot reject H0

More precise: 2 = 6.4 

#input data

x = scan( 

"http://edu.modas.l

u/data/txt/chemline

.txt", skip=1)

#Shapiro-Wilk

shapiro.test(x)

#Kolmogorov-Smirnov

ks.test(x,"pnorm",

mean=mean(x),

sd=sd(x))

#Jarque-Bera

library(tseries)

jarque.bera.test(x)

R: more advanced

https://datasharkie.com/how-to-test-for-normality-in-r/
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Thank you for your 

attention

QUESTIONS ?


